

Introduction to MODIS Instrumentation

Jennifer D. S. Griswold

A Short History

- 1983 NASA began to explore the concept of a polar-orbiting platform to complement a manned polar-orbiting space station
- Beginning as System Z, the idea gained momentum with NASA's proposed "Global Habitability" program
- After Challenger disaster, polar space station disappeared as did manned servicing requirement
- System Z became EOS Earth Observing System
 - Several instrument suites were developed
 - Surface Imaging and Sounding Package (SISP) included the Moderate Resolution Imaging Spectrometer
- MODIS soon split into 2 concepts
 - MODIS-N focused primarily on land and atmosphere sensing but included some ocean bands
 - MODIS-T (tilting) focused on ocean
- Because of budget constraints, MODIS-T vanished, replaced by MODIS-N and EOS-Color (to follow SeaWiFS)
- Further budget reductions led to replacement of EOS-Color by SIMBIOS

Terra (1999-present)

Terra and Its Five Climate-Monitoring Sensors

MODIS – Terra Instruments

- **ASTER** Advanced Spaceborne Thermal Emission and Reflection Radiometer
- CERES Clouds and Earth's Radiant Energy System
- MISR Multi-angle Imaging SpectroRadiometer
- MODIS Moderate-resolution Imaging Spectroradiometer
- **MOPITT** Measurements of Pollution in the Troposphere

Aqua (2002-present)

Aqua Instruments

- AIRS Atmospheric Infrared Sounder
- AMSU-A Advanced Microwave Sounding Unit
- HSB Humidity Sounder for Brazil
- **AMSR-E** Advanced Microwave Scanning Radiometer for EOS
- MODIS Moderate-resolution Imaging Spectroradiometer
- **CERES** -or Clouds and Earth's Radiant Energy System

MODIS Terra-Aqua Summary

- Responsible Center: NASA Goddard Space Flight Center
- **Description:** Used to understand the global dynamics and process occurring on land, in the oceans and in the atmosphere.
- Channels: 36-band cross-track scanning radiometer
- **Spectral Range:** Visible to thermal infrared measurements at 0.4-14.5 μm
- **Spatial resolution:** 250 m (bands 1-2), 500 m (bands 3-7), to 1 km (bands 8-36)
- Swath width: 2330 km (cross track) by 10 lm (along track at nadir)
- Global coverage every 1-2 days
- Terra Launched: Dec. 18, 1999
- Aqua Launched: May 4, 2002

Improvements on Previous Satellites

Heritage: AVHRR (land), SeaWIFS (ocean), HIRS (atmosphere) Major differences:

More spectral bands (490 detectors)

Multiple samples along track on each earth scan

Higher spatial resolution

On-orbit radiometric, spatial, and spectral calibration Improved radiometric accuracy and precision (12-bit) Improved geolocation accuracy

Higher data rate requiring X-band direct broadcast

MODIS Orbital Characteristics

• TERRA Orbital Characteristics

- Sun synchronous, near-polar orbit
- Equatorial 10:30 pm, descending node crossing
- Inclination 98.5°
- Altitude 705 km
- Period 99 minutes (16 orbits per day)

- AQUA Orbital Characteristics
 - Sun synchronous, near-polar orbit
 - Equatorial 1:30 pm, ascending node crossing
 - Inclination 98°
 - Altitude 705 km (438 miles)
 - Period 99 minutes (16 orbits per day)

A **Sun-synchronous orbit** (sometimes called a heliosynchronous **orbit**) is a geocentric **orbit** which combines altitude and inclination in such a way that an object on that **orbit** will appear to **orbit** in the same position, from the perspective of the **Sun**, during its **orbit** around the Earth.

MODIS Aqua coverage (2330 km swath)

Space Science and Engineering Center (SSEC)

http://www.ssec.wisc.edu/datacenter/aqua/

Where is the Electromagnetic

Spectrum can MODIS "see"?

Primary Use for Reflected Solar Band

Primary Use	Band	Bandwidth	Spectral Radiance ª	Required SNR ³
Land/Cloud/Aerosols Boundaries	1	620 - 670	21.8	128
	2	841 - 876	24.7	201
Land/Cloud/Aerosols Properties	3	459 - 479	35.3	243
	4	545 - 565	29.0	228
2/3 of the data output	5	1230 - 1250	5.4	74
comes from bands 2-7	6	1628 - 1652	7.3	275
	7	2105 2155	10	110
Ocean Color/ Phytoplankton/	8	405 - 420	44.9	880
Biogeochemistry	9	438 - 448	41.9	838
	10	483 - 493	32.1	802
	11	526 - 536	27.9	754
	12	546 - 556	21.0	750
	13	662 - 672	9.5	910
	14	673 - 683	8.7	1087
	15	743 - 753	10.2	586
	16	862 - 877	6.2	516
Atmospheric Water Vapor	17	890 - 920	10.0	167
	18	931 - 941	3.6	57
Bands 1 to 19 are in nm; Bands 20 to 36 are in µm	19 pect	ral Radizno96511ues a	are (W /1510- µm-sr	250

Primary Use for Each Thermal Band

Primary Use	Band	Bandwidth <u>+</u>	Spectral Radiance ²	Required NE[delta]T(K)
Surface/Cloud Temperature	20	3.660 - 3.840	0.45(300K)	0.05
burrace, croud remperature	21	3.929 - 3.989	2.38(335K)	2.00
	22	3.929 - 3.989	0.67(300K)	0.07
	23	4.020 - 4.080	0.79(300K)	0.07
Atmospheric Temperature	24	4.433 - 4.498	0.17(250K)	0.25
	25	4.482 - 4.549	0.59(275K)	0.25
Cirrus Clouds Water Vapor	26	1.360 - 1.390	6.00	150(SNR)
	27	6.535 - 6.895	1.16(240K)	0.25
	28	7.175 - 7.475	2.18(250K)	0.25
Cloud Properties	29	8.400 - 8.700	9.58(300K)	0.05
Ozone	30	9.580 - 9.880	3.69(250K)	0.25
Surface/Cloud Temperature	31	10.780 - 11.280	9.55(300K)	0.05
	32	11.770 - 12.270	8.94(300K)	0.05
Cloud Top	33	13.185 - 13.485	4.52(260K)	0.25
	34	13.485 - 13.785	3.76(250K)	0.25
	35	13.785 - 14.085	3.11(240K)	0.25
	36	14.085 - 14.385	2.08(220K)	0.35

*Bands 1 to 19 are in nm; Bands 20 to 36 are in μ m

NE(delta)T = Noise-equivalent temperature difference

MODIS Challenges

Multiple detectors:

Detector differences are noticeable

Dead or out-of-family detectors must be handled

Multiple samples along track introduce bowtie distortion

Spectral information:

Many interdependent bands

How to utilize all the spectral information?

Data rate:

Orders of magnitude larger than heritage sensors

The MODIS sensor and its major subsystems

VIIRS, MODIS, FY-1C, AVHRR

MODIS IR Spectral Band

High resolution atmospheric absorption spectrum and comparative blackbody curves.

MODIS Scanner Characteristics

Image Acquisition Details

Scan sequence:

- Solar diffuser 1
- 2. Spectroradiometric Calibration Flight direction Assembly
- Blackbody 3.
- 4. Space View
- 5. Earth scan

Growth of MODIS 1 km pixel with scan angle

Consecutive "bowtie" shaped scans are contiguous at nadir, and overlap as scan angle increases...

MODIS bowtie artifacts at edge of swath

- Are not a 'problem': they are a consequence of the sensor design
- Can be removed for visualization purposes by reprojecting the image onto a map
- Do not affect science algorithms that run on a pixel-by-pixel basis or within one earth scan

Image Artifacts

- Mirror Side Striping (Band 8, 0.41 µm)
 - Reflectance, emissivity, or polarization of each scan mirror side not characterized correctly.
 - Can be corrected.

• Noisy Detectors (Band 34, 13.6 µm)

- Detectors are noisy on a per frame basis and unpredictable from scan to scan.
- Difficult to correct.
- Saturation (Band 2, 0.87 µm)
 - Signal from earth scene is too large for 12 bit digitization with current gain settings.
 - Workaround available.

🗃 #1 Zoom (4)

Side 0

Side

- 🗆 ×

Destriping

- Striping is a consequence of the calibration algorithm, where each detector is calibrated independently. If the instrument were characterized perfectly, there would be no striping.
- However, it is not possible to characterize the instrument perfectly because of time, cost, and schedule constraints.
- As a result, striping artifacts are introduced by
 - Two-side scan mirror is not bring characterized perfectly
 - Detectors behavior can change in orbit (bias, spectral response)
 - Detectors may be noisy
- The challenge is to design a destriping algorithm which is effective, fast, and insensitive to instrument changes.

Fig. 2 Destriping of ocean color products $nL_w(412)$ (upper panels: (a)–(c)) and Chl-a concentration (lower panels: (d)–(f)) obtained by MODIS-Aqua on December 3, 2013 at around 05:05 UTC near (26°N, 123°E). The original data are shown in panels (b) and (e), while the destriped data are shown in panels (c) and (f). The values along the black line in panel (b) are plotted in panels (a) and (d) with black lines from original images (panels (b) and (e)) and red lines from destriped images (panels (c) and (f)).

Karlis Mikelsons, Menghua Wang, Lide Jiang, and Marouan Bouali, "Destriping algorithm for improved satellite-derived ocean color product imagery," Opt. Express **22**, 28058-28070 (2014)

http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-22-23-28058

MODIS Emissive Band Destriping: Granule vs. Daily Analysis

- The Atmosphere Group products for Collection 5 and 6 include detriping of all emissive bands (20-25, 27-36) and band 26.
- The destriping algorithm is granule-based, and for a small percentage of granules, the impact may be equivocal in bands 31 and 32.
- Granules with sharp transitions between warm and cold scenes (e.g. hot land, cool ocean) may have artifacts in the scene transition zone.

MODIS Cloud Products

Jennifer D. S. Griswold

MODIS Atmosphere Team Product

Organization and People

Table 1 – Platnick et al 2003

IABLE I

SUMMARY OF MODIS PIXEL-LEVEL (LEVEL-2) CLOUD PRODUCTS AND THEIR CURRENT DEPENDENCIES. * TERRA DESIGNATION (AQUA IDS ARE MYD35, MYD06, ETC.); ^a NSIDC NISE AND/OR NCEP SEA ICE CONCENTRATION; ^b NCEP GDAS SIX-HOUR DATASET; ^c NCEP REYNOLDS BLENDED SST PRODUCT; ^d AGGREGATION OF MODIS ECOSYSTEM CLASSIFICATION PRODUCT (MOD12) WITH MODIS DIFFUSE SKY SURFACE ALBEDO PRODUCT (MOD43). SEE TEXT FOR FURTHER DETAILS

Retrieved parameter	Earth Science Data Designation Product ID*	Investigators	MODIS spectral bands used	Spatial resolution (km)	MODIS ancillary input	Non-MODIS ancillary input
CLOUD MASK	MOD35	Ackerman <i>et al</i> .	up to 20 bands, VIS thru IR	0.25, 1		snow/sea ice mask ^a
CLOUD PROPERTIES	MOD06					
CLOUD TOP PROPERTIES Cloud-top pressure (p_c) , cloud-top temperature (T_c) , effective emissivity $(f\epsilon)$		Menzel <i>et al.</i> Thermal IR	11 μm and CO ₂ bands (31–36)	5	MOD35	model/assimilated T, p profiles ^b , SST ^c
CLOUD OPTICAL AND MICROPHYSICAL PROPERTIES: Cloud optical thickness (τ_c) , particle effective radius (r_e) , water path Thermodynamic phase (IR algorithm)		Solar Ref King <i>et al.</i> Baum <i>et al.</i> Thermal IR	Tectance VIS, NIR, SWIR, MWIR (bands 1, 2, 5, 6, 7, 20) 8.5, 11 μm bands (bands 29, 31)	1 5	MOD35, MOD06 (p_c, T_c) , ecosystem + surface albedo ^d	snow/sea ice mask ^a , model/assimilated <i>T</i> , <i>p</i> profiles ^b , SST ^c

Primary Use for Reflected Solar Band

Primary Use	Band	Bandwidth	Spectral Pedianos	Required	
Land/Cloud/Aerosols Boundaries	1	620 - 670	21.8	128	
	2	841 - 876	24.7	201	
Land/Cloud/Aerosols Properties	3	459 - 479	35.3	243	
	4	545 - 565	29.0	228	
	5	1230 - 1250	5.4	74	
	6	1628 - 1652	7.3	275	
	7	2105 - 2155	1.0	110	
Ocean Color/ Phytoplankton/	8	405 - 420	44.9	880	
Biogeochemistry	9	438 - 448	41.9	838	
	10	483 - 493	32.1	802	
	11	526 - 536	27.9	754	
	12	546 - 556	21.0	750	
	13	662 - 672	9.5	910	
	14	673 - 683	8.7	1087	
	15	743 - 753	10.2	586	
	16	862 - 877	6.2	516	
Atmospheric Water Vapor	17	890 - 920	10.0	167	
	18	931 - 941	3.6	57	
Bands 1 to 19 are in nm; Bands 20 to 36 are in µm	19 pect	ral Ra <mark>gizn 965</mark> alues a	are (W /15.0 -µm-sr	250	

Primary Use for Each Thermal Band

Primary Use	Band	Bandwidth ¹	Spectral Radiance²	Required NE[delta]T(K)
Surface/Cloud Temperature	20	3.660 - 3.840	0.45(300K)	0.05
· · · · · · · · · · · · · · · · · · ·	21	2 020 - 2 080	2 28(225K)	2.00
	22	3.929 - 3.989	0.67(300K)	0.07
	23	4.020 - 4.080	0.79(300K)	0.07
Atmospheric Temperature	24	4.433 - 4.498	0.17(250K)	0.25
	25	4.482 - 4.549	0.59(275K)	0.25
Cirrus Clouds Water Vapor	26	1.360 - 1.390	6.00	150(SNR)
	27	6.535 - 6.895	1.16(240K)	0.25
	28	7 175 7 175	2 18(250K)	0.05
Cloud Properties	29	8.400 - 8.700	9.58(300K)	0.05
		0 00		
Surface/Cloud Temperature	31	10.780 - 11.280	9.55(300K)	0.05
	32	11.770 - 12.270	8.94(300K)	0.05
Cloud Top	33	13.185 - 13.485	4.52(260K)	0.25
Altitude	34	13.485 - 13.785	3.76(250K)	0.25
	35	13.785 - 14.085	3.11(240K)	0.25
	36	14.085 - 14.385	2.08(220K)	0.35

*Bands 1 to 19 are in nm; Bands 20 to 36 are in µm

NE(delta)T = Noise-equivalent temperature difference

Example Granule (Platnick et al, 2003)

Fig. 1. True-color composite of a granule of Terra MODIS data from July 18, 2001, 1530 UTC. The image shows widespread boundary layer stratocumulus clouds off the coasts of Peru and Chile, associated with cool upwelling water along the Humboldt current.

Cloud Mask

- Is the primary ancillary input to other algorithms
- Produced globally day and night
- 1 km-pixel resolution
- Uses as many as 20 (of 36) bands
- Assesses the likelihood of a pixel being obstructed by clouds
- Allows for "clear sky confidence" i.e. varying degrees of cloudiness instead of "yes cloud-no cloud"

Ackerman, Frey, UW MODIS Group

Cloud Mask - Algorithm Development

- Built upon work done by others:
 - ISCCP Rossow and Garder 1993
 - CLAVR Stowe et al. 1991
 - APOLLO Saunders and Kriebel 1988
- New spectral channels new tests
 - 1.38 micron high cloud reflectance test
- Many spectral channels (more later)
 - more tests go into final product
 - first platform with 8-11 (can use tri-spectral tests)

Cloud Mask

- 48 bits of output per pixel
- Individual cloud test results
- Processing path
- Land/Sea Tag
- Classification of Cloud Contamination
 - Confident Clear
 - Probably Clear
 - Uncertain/Probably Cloudy
 - Cloudy

Cloud Mask

- 1. Determine surface type (both Day and Night)
 - Land, water, snow/ice, desert, coast
- 2. Threshold Tests
 - Clouds, aerosol in FOV
- 3. "Clear" Confidence Level
 - 1 = high confidence clear
 - o = low confidence clear

4. Different tests

- Detection of different cloud conditions
- Grouped together for detecting similar cloud conditions

Minimum Confidence of Each Group

$$G_{j=1,N} = \min \left[F_i\right]_{i=1,m}$$

- *F_i* = the confidence level of an individual spectral test
- *m* = number of tests in a given group
- *j* = the group index
- *N* = Number of groups

Cloud Mask

Final Cloud Mask Confidence

$$Q = N \sqrt{\prod_{i=1}^{N} G_j}.$$

- *Q* = final cloud mask confidence
- *N* = Number of Groups
- G_j = Minimum confidence of group

- Clear-Sky Conservative
 - If highly confident it is cloudy (Fi = o) then the final clear-sky confidence is o.
- Confidence Levels (OF BEING CLEAR!!)
 - Confident Clear (Q > 0.99)
 - Probably Clear (Q > 0.95)
 - Uncertain/Probably Cloudy (Q > 0.66)
 - Cloudy (Q ≤ 0.66). (*not clear*)

FIRST TWO BITS of the MASK

Cloud Mask

Difficult Over

- Non-vegetated surfaces
- Transitional areas (Desert-Vegetation)
- High-elevations
 - Mountains
 - Antarctica plateau
- Sunglint regions (later)
- Nighttime masking during strong temp inversions

Fig. 2. The overall assessment from the MODIS cloud mask for the image of Fig. 1 as given by the first two bits of the mask.

• Uncertain/Probably Cloudy

- Usually near cloud edges
- Probably Clear
 - Isolated regions over land, away from cloud edges

Confidence Level of Clear

Example thresholds for the simple IR window cold cloud test.

Cloud Mask Visible Test

Cloud Mask 13.9 µm Test

Cloud Mask 1.38 µm Test

