

CloudSat Introduction

Jennifer D. S. Griswold

Delta II launch vehicle

A-Train Orbit

- The satellites in the A-Train are maintained in orbit to match the World Reference System 2 (WRS -2) reference grid used by Landsat
- CloudSat and CALIPSO lag Aqua by 1 to 2 minutes
- CloudSat and CALIPSO travel within 10-15 seconds of each other so that both instrument suites view the same cloud area at nearly the same time.
- Crucial for studying clouds which have **lifetimes often less than 15 minutes**.
- The constellation has a nominal orbit altitude of 705 km and inclination of 98 deg.
- Aqua leads the A-train with an equatorial crossing time of about 1:30 pm

WRS-2 Reference Grid

- Developed to facilitate regular sampling patterns by remote sensors in the Landsat program
- Landsat-7 and Terra are "morning" satellites in the same orbit as the A-Train
- Each satellite competes 14.55 orbits per day with a separation of 24.7 degrees longitude between each successive orbit at the equator.
- The orbit tracks at the equator and progresses westward 10.8 degrees on succeeding days, which over a 16-day period produces a uniform WRS grid over the globe. The WRS grid pattern of 233 orbits with separation between orbits at the equator of 172 km
- The aqua satellite is controlled to the WRS grid to within +/- 10 km

Formation Flying

Control Boxes

 Satellites are allowed to drift inside control boxes until they approach the boundaries of the box, then maneuvers are initiated to adjust the orbit.

Staying in "Boxes" is Crucial to:

- maintain the observing times
- geometries of the instruments
- avoid collisions
 - which would produce a debris field that would threaten the entire formation.

<image>

Formation Flying: Control Boxes CloudSat is maintained 12.5 ± 2.5 seconds ahead of CALIPSO Aura is maintained ~15 minutes (~6750 km) PARASOL CALIPSO Aqua behind Aqua 58 sec 73 sec 435 km 547 km Agua, CALIPSO, and PARASOL are maintained in control boxes of ±21.5 seconds (±158 km)

CloudSat

Sep 16, 2010 08:01:42(GMT)

CloudSat

- 1999 selected as a NASA mission, launched April 28, 2006
- To Study:
 - Cloud Abundance
 - Distribution
 - Structure
 - Radiative Properties
- first satellite-based mm-wavelength cloud radar
- more than 1000 times more sensitive than existing weather radars.
 - 485 m vertical resolution
 - 1.4 km antenna 3 dB footprint
- detection of much smaller particles of liquid water and ice that constitute the large cloud masses

CLOUDSAT

Cloud Art: Home

Mission Objectives

• Why CloudSat?

- Unique in its ability to sense condensed **cloud particles** while coincidently detecting **precipitation**!
- It has a number of important goals in its mission, including:
 - 1. Improve the way clouds are parameterized in global models
 - 2. Quantitatively evaluate the relationship between the vertical profiles of cloud liquid water and ice and the radiative heating of the atmosphere and surface
 - 3. Evaluate cloud properties retrieved from other satellite systems
 - 4. Contribute to improving our understanding of the indirect effect of aerosols on clouds by investigating the effect of aerosol on cloud and precipitation formation.
- Other Goals Include
 - improving weather prediction and water resource management
 - help mitigate natural hazards
 - develop critical space-born technologies
 - designed to clarify the relationship between clouds and climate
 - It contributes to the better understanding of cloud-climate feedback problem

The Art Gallery

The paintings below are inspired by the artist's interest in the science of clouds and the role the study of clouds has played in the development of meteorology as a science over the years. This topic and others are described in the article by G. L. Stephens: The Useful Pursuit of Shadows, American Scientist, vol. 91, pp. 442-449, SeptiOct 2003. [PDF] Some excerpts from this article may be viewed by clicking on the menu items to the left (The Story of Clouds*, etc.).

Science Questions

- How much water and ice is the cloud expected to contain?
- How much of that water is likely to turn into precipitation?
- What fraction of the globe's cloud cover produces precipitation that reaches the ground?
- Can we quantitatively evaluate the representation of clouds and cloud processes in global atmospheric circulation models, leading to improvements in both weather forecasting and climate predication?
- Can we quantitatively evaluate the relationship between the vertical profiles of cloud liquid water and ice content and the radiative heating by clouds?

CloudSat Operations

- CloudSat uses advanced radar to "slice" through clouds, (Active Sensor scenario)
- It uses millimeter wave radar that operate at wavelengths of approximately 3 to 8 mm (or frequency of 94 or 35 GHz)

 Table 1. Cloud Profiling Radar Instrument and Performance

 Parameters

Parameter	Proposed Performance	
Frequency	94.05 GHz	
Annuac	/05-750 KIII	
Range resolution (6 dB)	485 m	
Cross-track resolution	1.4 km	
Along-track resolution	1.8 km	
Pulse width	3.3 µs	
Peak power (measured)	32.6 dB	
PRF	3700-4300 Hz	
Antenna diameter	1.85 m	
Antenna gain	63.1 dBi	
Antenna sidelobes	-50 dB (a) $\theta > 7^{\circ}$	
Integration time (single-beam)	0.16 s	
Data window	30 km	
Minimum detected reflectivity (measured)	-30 dBZ	

(Stephens et al. 2008)

CloudSat Operations

• Cloud Profiling Radar (CPR)

- CPR is 94 GHz
- Developed jointly by NASA's JPL and the Canadian Space Agency

• Why 94 GHz Radar Frequency?

- 3.1 mm wavelength
- Compromise:
 - Sensitivity
 - Antenna Gain
 - Atmospheric Transmission
 - Radar Transmitting Efficiency
- Sensitivity and Antenna Gain increase with frequency
- Atmospheric Transmission and Transmitter Efficiency decrease with frequency

CloudSat CPR

- The receiver portion of the RFES down-converts the signal to an IF (Intermediate Frequency).
- The IF signal is detected using a logarithmic amplifier (high dynamic range).
- The receiver noise level is critical in achieving the required sensitivity.

- The design of the CPR consists of the following subsystems:
 - **RFES (Radio Frequency Electronics Subsystem)**
 - The RFES consists of an up-converter which generates a pulsed signal and up-converts it to 94 GHz.
 - HPA (High Power Amplifier)
 - The signal is amplified to about 200 mW by a state-of-the-art MMIC power amplifier.
 - Antenna Subsystem (Quasi-Optical Transmission Line)
 - DSS (Digital Subsystem)

https://directory.eoportal.org/web/eoportal/satellite-missions/c-missions/cloudsat

CPR Profile Data

(Stephens et al. 2008)

- Range-resolved radar cross section per unit volume, η, at a specific range r:
- η = range-resolved radar cross section per unit volume
- *P_{rec}* =output power of the receiver
- P_t = transmitted power
- λ = wavelength
- *G_{rec}* = the receiver gain
- *G* = the antenna gain
- *r* = range to the atmospheric target
- Ω = integral of the normalized twoway antenna pattern
- Δ = integral of the received waveform shape
- *L_a* = the two-way atmospheric loss

 $p = \frac{P_{rec} (4\pi)^3 r^2 L_a}{P_t \lambda^2 G_{rec} G^2 \Omega \Delta}$

Absolute calibration requires precise knowledge of:

r, λ , G_{rec} , Ω , Δ , P_{rec} , and P_t

Expected Accuracy of 2dBZ!

CPR Profile Data

(Stephens et al. 2008)

- The quantity, η, is converted to the equivalent (attenuated) range resolved reflectivity factor:
- Z_e = range-resolved reflectivity factor
- η = range-resolved radar cross section per unit volume
- λ = wavelength
- $|K_w|$ = set to 0.75 representative of water at 10°C

$$Z_e = \eta \frac{\lambda^4 10^{18}}{\pi^5 |K_w|^2}$$

CloudSat Operations - Radar

- Radar reflectivity (Z) of a cloud is dependent on the Number (N) and size (D) of reflectors
 (Roughly Z= [mm⁶/m³])
 - Rain, Snow, Graupel, hail

$$Z = \int_0^{Dmax} N_0 e^{-\Lambda D} D^6 dD$$

• Z is also expressed in dBZ to account for the very large and very small values attributed to the different size reflectors

$$dBZ \propto 10 \, \log_{10} \frac{Z}{Z_0}$$

• Can be converted to rainfall rates:

$$\frac{\rm mm}{\rm hr} = \left(\frac{10^{(dBZ/10)}}{200}\right)^{\frac{5}{8}}$$

Direction of incident light

Radar in Space

- While TRMM has been a successful precipitation radar, its 17-18 dBZ minimum detectable signal does not allow views of light precipitation and/or clouds (except some anvils) due to wavelength and sensitivity
- Going to a higher frequency increases sensitivity to smaller particles (D⁶)
- However, Mie effects are more likely to occur, so there is some tradeoff
- W-Band (mm-wave) is an attractive option, since it is sensitive to many large cloud particles
- It has been demonstrated as an excellent airborne (Wyoming King Air) and ground-based platform, in combination with lidar, to estimate IWC and LWC in clouds

Mie Scattering

Mie Scattering, larger particles

Radar in Space

- Radar energy becomes more susceptible to Mie scattering as wavelength gets shorter or particles get larger (cutoff at $x = \pi^*D/\lambda$ - from geometric optics)
- above this cutoff, Rayleigh assumption breaks down and backscattered energy (in this case, Z) is reduced

Attenuation

- Depending on wavelength and the concentration of molecules, cloud particles, and precipitation-sized particles, power loss due to attenuation can be very significant.
- This power loss of either the transmitted power moving out to the target, or the backscattered power returning from the target is a result of both:

- Attenuation From:
 - Gases
 - At radar wavelengths attenuation by gases is associated with **absorption only**
 - Scattering is negligible at radar wavelengths
 - Attenuation can be very substantial at wavelengths near 1 cm over long path lengths near the Earth's surface.

Power loss Scattering (by particles along the path)

Cloud Particles & Precipitation

 Attenuation by cloud and precipitation particles can be due to both absorption and scattering. Attenuation will therefore be dependent upon particle size, shape, and composition.

CloudSat Operations - Radar

• What does dBZ stand for?

• **dB** = "**decibel**"

• Unit used to express differences in relative power or intensity

• Z = Reflectivity Factor

- amount of transmitted energy that is reflected back to the radar receiver
- In General:
 - The higher the dB value the larger the object detected (Ex: large rain drops)
 - Values of dBZ < 15 usually indicate very light precipitation that evaporates before reaching the ground

Original requirements on CPR

- Sensitivity defined by a minimum detectable reflecitvity factor of around -30 dBZ (actual ~30-31 dBZ)
 - Due to the fact that clouds are weak scatterers of microwave radiation

2009/08/22 CloudSat track - GOES E&W composite VIS/IR (Day/Night) 2009/08/22 18:002 // Composite VIS/IR (Day/Night) 08/22/09 18002 Reval Desearch Lab RBY

Hurricane Bill

Other CPR Properties

- Radar Sampling takes place at 625 kHZ
- Burst Rate 0.16 s/burst
 - The interval to create a CloudSat "ray" or Profile
- Pulse Repetition Frequency (PRF) 3400-4300
 - (4300 pule/sec) * (0.16 s/burst) = 688 pulse/burst
- CloudSat antenna has a diameter of 1.85 m
 - Footprint = 1.4 km across track area
 - Is the area covered by a satellite
 - Describes the horizontal spatial resolution
- CloudSat has 125 vertical bins with approximately
 - 240 m Vertical Spatial Resolution.

CloudSat Orbit

- CPR is flown in a **sun synchronous orbit** at 98 deg inclination angle and altitude raging from 705-230
- Along track velocity of 7 km/s
 - With the velocity and sample rate of 0.16 sec/profile we determine that:
 - CPR profile will be generated every 1.1 km along track

Other CPR Sampling Properties

 Effect of "sliding" the instantaneous footprint along track for one sample period.

(Stephens et al. 2008)

CloudSat Data Products

Standard Product ID	tandard Product ID Description Principal Inputs and Product Siz		
1A-Aux	Auxiliary data for navigation altitude assignments,	Digital Elevation maps, space craft ephemeris	
1B-CPR 2B-GEOPROF	Calibrated radar reflectivities Cloud geometric profile – includes as mask (with confidence measure), reflectivity (significant echoes), (gas) attenuation correction, and MODIS mask	Radar power, calibration factors 347 MB 1B-CPR, MODIS mask product. 498 MB	
2B-GEOPROF-LIDAR	Includes the fraction of a CPR bin filled with clouds as determined by lider	2B-GEOPROF + CALIPSO LIDAR 290 MB	
2B-CLDCLASS	8 classes of cloud type, including precipitation identification and likelihood of mixed phase conditions	Radar and other data (temperature, MODIS) from the constellation 282 MB A version to include lidar information is under development (2B-CLDCLASS-LIDAR)t	
2B-TAU	Cloud optical depth by layer, also effective radius (column)	2B-GEOPROF and MODIS radiances	
2B-CWC-RO, 2B-CW-RVOD	Cloud liquid water content (2B-LWC) C loud Ice water content (2B-IWC)	A radar only (RO) version that uses 2B-GEOPROF and temperature, (5291 MB) and a radar-optical depth version (RVOD) that combines 2B-GEOPROF	
2B-FLXHR	Atmospheric radiative fluxes and heating rates	2B-GEOPROF, 2B-TAU, 2B-CWC - 1516 MB. A version to include lidar information is under development (2B-FLXHR-LIDAR)t	
MODIS-AUX	Auxiliary Data Products MODIS radiances and cloud mask product	Radiances (MOD02) from 23 of the MODIS channels and mask (MOD35) subsetted to 3X5 km about CloudSat.	
AN-MODIS	MODIS 1B radiances and 2B products subsetted abut the CPR footprint	The data from MODIS-AUX plus selected products from MOD04-05-06 and -07	
AN-SSF	CERES single satellite footprint (SDSF) products matched to CPR	Surface and TOA fluxes from the CERES flash flux product	
AN-state variables	Subset of ECMWF along track of various forecast model state variables, energy	The subsetting details are currently under study to constrain data volume sizes	
	пилез, е.е.,		
2B-rain Precipitation (liquid)	Enhanced Products Precipitation incidence, Surface rainrate, profiles of liquid water content in precipitation	2B-GEOPROF, ECMWF-AUX wind speed and SST, and AMSR-AUX radiances	
2B-snow Precipitation (solid)	Precipitation incidence, profiles of snow particle size distribution parameters and snowfall rate	2B-GEOPROF, ECMWF-AUX temperature	
2B-CC-ICE	Profiles of number concentration, particle size and ice water content.	2B-GEOPOF, 2B-TAU, CALIPSO lidar, MODIS radiances	
AN-AMSRE	AMSR radiances and level 2 products matched to the CPR	AMSR-E level 2A radiances, rainfall, CWV,LWP SST and wind speed from the AMSR-E ocean product	
AN-PR	TRMM PR reflectivities and rainfall products matched to CPR reflectivity and rainfall products.	TRMM 1C21 reflectivities, rainfall products 2A21 and 2A25 and CloudSat's 2B-GEOPROF and new rainfall products	
TC Charlest	Special Products	at croppor and copparative and r	
TC-CloudSat	coordinate relative to storm center location (radial distance from storm, azimuthal direction). MODIS and AMSR-E products matched to	2D-GEOPROF mask, CPK reflectivities, AMR-E wind, water vapor, LWP, rain rates, MODIS cloud top temp, pressure, height and brightness temp, and "best track" storm center, max wind speed, SST, and selected	

Data: Home

CloudSat Data

- CloudSat's standard data products include:
 - calibrated cloud-profiling radar reflectivity data
 - cloud geometric profile
 - cloud classification
 - cloud optical depth by layer
 - cloud liquid water content
 - cloud ice water content
 - atmospheric radiative fluxes and heating rates
 - cloud geometrical profile with lidar input from CALIPSO
 - cloud classification with lidar input from CALIPSO

http://cloudsat.atmos.colostate.edu/data

CloudSat Standard Data Products

CLOUDSAT

Data

Cloud Art

Publications

CloudSat Standard Data Products are distributed by the CloudSat Data Processing Center, located at the Cooperative Institute for Research in the Atmosphere at Colorado State University in Fort Collins.

Process Description/Interface Control Documents for the Standard Data Products may be obtained here (CloudSat DPC site).

Product ID	Product Name	Responsible Persons
1B-CPR-FL	Radar Backscatter Profiles (First-Look)	Steve Durden
1B-CPR	Radar Backscatter Profiles	Steve Durden
2B-GEOPROF	Cloud Geometrical Profile	Jay Mace
2B-CLDCLASS	Cloud Classification	Zhien Wang
2B-CWC-RO	Cloud Water Content (Radar-only) (includes liquid and ice)	Norm Wood
2B-TAU	Cloud Optical Depth	John Haynes
2B-CWC-RVOD	Cloud Water Content (Radar- Visible Optical Depth) (includes liquid and ice)	Norm Wood
2B-FLXHR	Fluxes and Heating Rates	Tristan L'Ecuyer
2B-GEOPROF-LIDAR	Radar-Lidar Cloud Geometrical Profile	Jay Mace
28-CLDCLASS-LIDAR	Radar-Lidar Cloud Classification	Zhien Wang
2B-FLXHR-LIDAR	Radar-Lidar Fluxes and Heating Rates	Tristan L'Ecuyer
2C-PRECIP-COLUMN	Column Integrated Precipitation Retrieval	John Haynes
2C-RAIN-PROFILE	Range Resolved Precipitation Retreival	Matt Lebsock
2C-ICE	Ice Microphysical Retrieval	Jay Mace
2C-SNOW-PROFILE	Range Resolved Snowfall Retrieval	Norm Wood
2D-CLOUDSAT-TRMM	CloudSat/TRMM Matchups	Kwo-Sen Kuo
2D-CLOUDSAT-TC	CloudSat/Tropical Cyclone Matchups	Natalie Tourville

CloudSat Data

GEOPROF / LIDAR Comparisons 2006288035706_02473_CS_2B-GEOPROF_GRANULE_P_R03_E02

A-Train Cloud Ice

A CloudSat Granule & Subset

One orbit: June 13 2006

End of orbit

Start of orbit

Altocumulus: Melting ice mixed-phase? ua MODIO TUECOIOLOCEIIE CloudSat reflectivity factor • 14.30 UTC June 13th 2006 **MODIS RGB composite**

Papua New Guinea

 Tropical convection: oceanic and orographic

- Complex Cloud Systems
 - Multi-Level Clouds
 - Cirrus over Cumulus
 - Precipitating and non-precipitating