ATMO 102 Pacific Climates and Cultures

Lecture 3: Temperature

Horizontal Temperatures

- Warmer at the equator than at the poles
- Continents warmer than ocean at same latitude
- An island will be slightly warmer than the surrounding ocean

- **HEAT** The **TRANSFER** of energy into or out of an object because of **TEMPERATURE DIFFERENCES**
- It is the FLOW of energy!
- After heat is transferred it is stored as internal energy in the molecules of the air and water (any type of matter).
- Why do we care for PCC?
 - Movement of heat from the equator to the poles will play a role in both winds and ocean currents!

Heat vs. Temperature

Winds and Ocean Currents

- Why and where the wind blows is related to the heat transfer from the Equator to the Poles
- The wind drives the ocean currents due to friction.

Seasons

- What are seasons? Why do some locations on earth have "stronger" seasons and others "weaker?"
- Seasons are primarily due to:
 - Change in the length of day accounts for some.
 - Gradual change in the angle of the sun at noon.
 - Affects the amount of energy received at Earth's surface
 - When overhead \rightarrow strongest
 - Lower angle \rightarrow less intense

Hours of Sunlight

IROPICS

Length of Day, Sun angle and Seasons

- Why does length of day and sun angle change?
 - Earth's orientation to the sun is constantly changing

• The TILT of the Earth!!!

- 23.5 degrees
- Without the tilt we wouldn't have seasons

Measuring Temperature

• Fahrenheit (°F)

- Freezing is at 32 and Boiling is a 212.
- 180 Divisions between Freezing and Boiling
- We use this temperature scale here in the USA.

• Celsius (°C)

- Decimal Scale (powers of 10)
- 0 degrees = Freezing and 100 degrees = Boiling
- 100 between Freezing and Boiling
- Scientists use this.

• Kelvin (K)

- Called the "Absolute Scale"
- Same Spacing as Celsius
 - 100 divisions between boiling and freezing
- 0 K = the temperature at which all molecular motion is presumed to cease
- Absolute Zero = molecules stop moving, no thermal motion.

 It's the first thing we usually think about when we talk about "weather"

Temperatures vary on different time scales

- Seasonally, daily and even hourly
- Temperatures vary all over the globe, by quite a bit

Global Temperatures

Daily Variations in Temperature

Minimum right before sunrise

No heat from sun, lots of IR energy radiated during night

Maximum after noon (peak)
In = out

Heat from sun + IR radiated up from the surface

Ways to average Temperature

Daily mean temperature

- Average of 24 hourly readings
- Adding maximum and minimum and dividing by two.

Daily Temperature Range

The difference between the maximum and minimum daily temperatures

Monthly mean temperature

 Adding together the daily means for each day of a month and then dividing by the number of days in that month

Annual Mean Temperature

Adding together the monthly means and dividing by 12

Annual Temperature Range

 The difference between the warmest and coldest monthly mean temperatures

Other Controls of Temperature

- Differential Heating of Land and Water
- Ocean Currents
- Altitude
- Geographic Position
- Cloud Cover and Albedo

Differential Heating of Land and Water

- Different surfaces absorb, emit and reflect different amounts of energy.
 - This causes variations in air above each surface
- In general: Land HEATS more rapidly and to HIGHER temperatures than Water.
- In general: Land COOLS more rapidly and to LOWER temperatures than Water.
- Variations over Land are GREATER than variations over the Ocean!!!

Ocean – Why is it less variable?

- 1. Surface temperature of water rises and falls slower than land
- 2. Water is highly mobile and mixes easily (think mixing red and blue dye... turns purple)
- 3. Daily changes are about 6 meters deep
- 4. Yearly ocean and deep lakes experience variations through a layer between 200-660 m thick!

Land – Why is it more variable?

- 1. Heat does not penetrate deeply into soil or rock; it remains near the surface.
- 2. Rocks are not fluid... so no mixing
- 3. Daily temperature changes are seen only 10 cm down
- 4. Yearly temperature changes reach only 15 meters or less

Opaque vs. Transparent

 Because land surfaces are opaque heat is absorbed only at the surface

• Water is **transparent** and lets energy from the sun **penetrate** to a depth of several meters

MATERIAL	SPECIFIC HEAT (Joules/gram • °C)
Liquid water	4.18
Solid water (ice)	2.11
Water vapor	2.00
Dry air	1.01
Basalt	0.84
Granite	0.79
Iron	0.45
Copper	0.38
Lead	0.13

Specific Heat

• The specific heat

- the amount of heat needed to raise the temperature of 1 gram of water by 1 degree Celsius is greater (~3 times) than to do the same for 1 gram of soil/rock.
- The OCEANS require MORE heat to raise its temperature the same amount as an equal quantity (grams) of land.

Evaporation over Ocean

- Evaporation is greater from Oceans than from Land
 - There's more water molecules ^(C)
 - Energy is required to evaporate water
 - When energy is used to evaporate water it is not available for heating.

Other Controls of Temperature

- Ocean Currents
- Altitude
- Geographic Position
- Cloud cover and albedo

Ocean Currents

- Ocean currents are caused by wind
 - interactions between the atmosphere and ocean
- Energy passes from the atmosphere to the ocean via friction.
 - The DRAG exerted be the wind causes it to move
- In the Pacific warm water from the tropics travels up past Indonesia and Southeast Asia toward Japan as the Kuroshio Current.
 - It keeps this region warmer than it would otherwise be.

Altitude

- Cooler temperatures at greater heights
- Atmospheric pressure and density decreases so that atmosphere absorbs and reflects less radiation.

https://upload.wikimedia.org/wikipedia/commons/2/26/Mauna_Kea_Summit_in_Winter.jpg

- Mauna Kea Stands 4,205 m (13,796 ft) above sea level
 - However, much of the mountain is under water; when measured from its oceanic base, Mauna Kea is over 10,000 m (33,000 ft) tall significantly taller than Mount Everest.

https://commons.wikimedia.org/wiki/File:Mauna_Kea_from_Kohala_Mountain_Road.JPG

Geographic Position and Winds

• Leeward: Prevailing winds blow TOWARDS the Ocean

Lacks Ocean Influence, More like Land Temperatures

Leeward Coast

MORE VARIABLE TEMPERATURES

• Windward: prevailing winds blow from the Ocean to the SHORE

Moderated by the Ocean air, cool summers-mild winters

LESS VARIABLE TEMPERATURES

• Prevailing Winds: The wind direction most frequently observed during a given period.

Albedo

- Energy is returned to space via reflection and emission
- ALBEDO The percentage reflected
- About 30% of incoming solar radiation is reflected by the earth
 - 5% from land and the ocean
 - 25% from clouds and ice!

Bouncing back at the same angle and same intensity Produces a larger number of weaker rays, more forward less backward

Cloud Cover

- Clouds cool during the day
 - High ALBEDO
 - Lower Maximum
- Clouds warm at night
 - Trap OUTGOING Longwave radiation
 - Higher Minimum

ON AVERAGE Clouds end up COOLING the Earth!

