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MODIS Land Data Storage, Gridding, and
Compositing Methodology: Level 2 Grid

Robert E. Wolfe, David P. Roy, and Eric Vermote,Member, IEEE

Abstract—The methodology used to store a number of the
Moderate Resolution Imaging Spectroradiometer (MODIS) land
products is described. The approach has several scientific and
data processing advantages over conventional approaches used
to store remotely sensed data sets and may be applied to any
remote-sensing data set in which the observations are geolo-
cated to subpixel accuracy. The methodology will enable new
algorithms to be more accurately developed because important
information about the intersection between the sensor obser-
vations and the output grid cells are preserved. The method-
ology will satisfy the very different needs of the MODIS land
product generation algorithms, allow sophisticated users to de-
velop their own application-specific MODIS land data sets, and
enable efficient processing and reprocessing of MODIS land
products. A generic MODIS land gridding and compositing
algorithm that takes advantage of the data storage structure
and enables the exploitation of multiple observations of the
surface more fully than conventional approaches is described.
The algorithms are illustrated with simulated MODIS data,
and the practical considerations of increased data storage are
discussed.

I. INTRODUCTION

T HE FUNCTIONAL design of satellite data production
systems is based upon the processing of raw instrument

data into a hierarchy of increasingly refined data products.
These production processes discard large amounts of data
throughout the processing chain. This forces the user commu-
nity to use data that may be inappropriate for their application
requirements, precludes opportunities for sophisticated users
to take advantage of the entire sensed data set, and makes
data reprocessing and on-demand data processing resource
intensive. As new remote-sensing systems with improved
geometric and radiometric quality and improved calibration
stability become available, the requirement for data stor-
age structures that will support flexible application-specific
uses of the sensed data will increase. This paper describes
the data storage methodology developed for terrestrial data
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sensed by the Moderate Resolution Imaging Spectroradiometer
(MODIS).

MODIS is planned for launch onboard the morning (AM1)
and afternoon (PM1) Earth Observing System (EOS) platforms
in 1998 and 2000, respectively [1]. MODIS will sense all
of the earth’s surface in 36 spectral bands spanning the
visible (0.415 m) to infrared (14.235 m) spectrum at nadir
spatial resolutions of 1 km, 500, and 250 m. MODIS will
provide both day and night full earth coverage every two
days and full coverage every day for latitudes above ap-
proximately 30. MODIS will be the primary EOS sensor
for providing data on global biospheric dynamics and will
reduce reliance upon data sensed by instruments such as the
Advanced Very High Resolution Radiometer (AVHRR). The
MODIS land science team is currently developing remote-
sensing algorithms for deriving global time-series data prod-
ucts on various terrestrial geophysical parameters that will be
used by the earth science community [2], [3]. The products
include land surface reflectance, land surface temperature,
spectral vegetation indexes, snow and sea ice cover, fire
detection, land cover and land cover change, spectral albedo,
bidirectional reflectance characterization, and a number of
biophysical variables that will contribute to an improved
understanding of global carbon cycles, hydrologic balances,
and biogeochemical cycles.

The MODIS land data storage methodology was developed
to satisfy the diverse needs of the MODIS land product
generation algorithms. The requirements of the methodology
are to enable efficient processing and reprocessing of MODIS
land products, support flexible subsequent application of the
data, provide users with all of the original, sensed MODIS
observations and their subpixel geolocation information, and
support the development of better science using MODIS
land data. Constraining these is the requirement that the
methodology does not prohibitively increase data storage costs
and that mechanisms are in place to accommodate evolving
data storage resources.

The MODIS land data storage methodology stores daily in-
formation concerning the MODIS observations of each part of
the earth’s surface. Rather than discard multiple observations
of the same location, pointers to all observations that fall over
a significant portion of each output geolocated grid cell are
stored along with information concerning the observation/grid
cell intersection. The data storage methodology will allow
sophisticated users to develop their own application-specific
MODIS land data sets and enable new and some existing
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Fig. 1. Gridding process and examples of forward and inverse mapping
between the input-sensed observation space (left) and the output geometrically
correct space (right).

remote-sensing algorithms to be more accurately developed.
A generic MODIS land gridding and compositing algorithm
that takes advantage of the data storage structure is described
to illustrate these points.

II. CONVENTIONAL STORAGE OF GLOBAL SATELLITE

REMOTELY SENSED DATA: GRIDDED AND COMPOSITEDDATA

Commonly only raw and highly processed, global satellite,
remotely sensed data sets are archived and distributed to
the user community. The processed data sets are typically
geometrically corrected data that have been mosaicked and
temporally composited into a single representation of the
surface. The geometric correction process reconstructs re-
motely sensed data into a new image grid with known earth-
based coordinates that may be navigated like a map. Satellite
data must be geometrically corrected to remove geometric
distortions caused by the instrument viewing geometry, the
curvature of the earth, surface relief, and perturbations in the
motion of the instrument relative to the surface. Geometric
correction can be considered a two-stage process. First, the
sensed image observations are geolocated, and then secondly,
the geolocated observations are gridded into an output grid.
Different orbits of geometrically corrected satellite data may
then be combined using a compositing routine. Composited
data are assumed to be representative of the surface over the
compositing period and to have reduced cloud and atmospheric
contamination [4]. The gridding and compositing procedures
and some terminology used in the rest of this paper are
described below.

A. Gridding

The allocation of geolocated image observations into an
output image grid is termed gridding and is illustrated in
Fig. 1. The pixels defined by the output image grid will be
referred to as grid cells. The left half of Fig. 1 illustrates the
input observation space viewed by the instrument and shows
the dimensions and location of each sensor observation on the
earth’s surface. In practice, the observations will have elliptical
shapes as the surface area convolved with the system point
spread function (PSF) defines the area that is physically sensed
[5]. The right half of Fig. 1 illustrates how these observations

may fall relative to a geometrically correct output image grid.
The grid cell coordinates are predefined by specifying the grid
cell dimensions and the origin and orientation of the output
grid in some earth-based coordinate system. The observations
and grid cells have different dimensions and are misaligned.

There are generally two gridding approaches: a forward
mapping approach, in which the observations are mapped into
the output grid, and an inverse approach, in which the grid cells
are mapped into the sensed image (Fig. 1). Both approaches
will introduce artifacts or change the structure of the output
gridded image where the grid cells and observations do not
match exactly.

In the forward gridding approach, sometimes known as the
direct method [6] or pixel carryover [7], each observation
is allocated to the grid cell that the observation center falls
within. When two or more observations map into the same
grid cell, a decision is made as to which observation to keep;
usually, the observation falling closest to the grid cell center
is selected. The forward gridding approach is computationally
inefficient as grid cells may be addressed more than once.

In the inverse gridding approach, sometimes known as the
indirect method [6] or pixel filling [7], each grid cell center
is mapped into the sensed image. The grid cell value is then
interpolated from a local neighborhood of surrounding obser-
vations. The interpolation process is known as image resam-
pling. Nearest-neighbor resampling is the simplest resampling
method and works by allocating the value of the nearest
observation to the grid cell. More sophisticated resampling
functions were developed to approximate the theoretically op-
timal sinc resampling function, which cannot be implemented,
as it requires an infinitely large pixel neighborhood [8]. These
functions include bilinear, cubic convolution, and truncated
sinc resamplers [8]–[10].

The forward gridding approach and the nearest-neighbor
resampling approach produce the same result. Both are com-
monly used because they are computationally simple and do
not alter the values of the original sensed data. They may,
however, introduce subpixel geometric discontinuities (up to a
maximum of of an observation dimension) and discard
observations completely. The more complex, inverse-gridding,
resampling methods alter the radiometric values of the original
sensed data [9]–[11].

None of the gridding approaches consider the degree of
overlap of different observations that may fall within each
grid cell. The forward gridding and the nearest-neighbor
resampling methods select only a single observation per grid
cell. The other resampling methods assume that the ob-
servations are distributed evenly across the earth’s surface.
However wide field-of-view, whiskbroom sensors, such as
the AVHRR [5], [12] and MODIS [1], [13], have progres-
sively overlapping observations further from nadir. Image-
restoration-based approaches that use knowledge of the system
PSF and the observation/grid cell intersection geometry have
been suggested [14], [15]. Restoration techniques have not
been implemented operationally because of difficulties reliably
defining the system PSF (the convolution of the dynamic
instrument PSF with a variable atmospheric PSF) and because
they are susceptible to image noise [15].
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B. Compositing

Compositing procedures are applied to time series of geo-
metrically correct image data in an attempt to produce a single
representative data set. They are typically applied to multiple
orbits of data sensed within the same day and orbits of data
sensed over a period of several days to a month. They either
select the “best” observation of a grid cell based on some
criteria or combine multiple observations of the same grid cell.
Compositing criteria have included the maximum normalized
difference vegetation index (NDVI), maximum brightness tem-
perature, maximum surface temperature, maximum difference
in red and near-infrared reflectance, minimum scan angle,
maximum thermal radiance, and combinations of these [4],
[16]–[19]. The criteria are designed to ideally select from the
time series only near-nadir observations that have reduced
cloud and atmospheric contamination. However, some of
these criteria have been shown to select AVHRR observations
due to bidirectional reflectance effects rather than reduced
atmospheric or cloud contamination [17], [20]. Compositing
algorithms that model the bidirectional reflectance have been
developed to compensate for this problem and combine all or
most of the observations of the grid cell [21]. The reliance of
compositing procedures upon geometrically correct data may
introduce biases caused by registration errors and by changes
in the effective spatial resolution of the data across the image
swath.

Registration errors between colocated grid cells sensed in
different orbits will interact with the compositing criteria to
introduce compositing biases over heterogeneous scenes. For
example, AVHRR time series are commonly composited using
the maximum NDVI. Gridding and geolocation errors found
between colocated grid cells may lead to the preferential se-
lection of vegetated grid cells (high NDVI) over nonvegetated
grid cells (low NDVI) found in different orbits. This may
enlarge the boundaries of vegetation features, cause small
isolated nonvegetated features to shrink or disappear, and
smooth heterogeneous vegetated/nonvegetated scenes.

Typically, the grid cell dimensions are set equal to the nadir
observation dimensions. As a result, geometrically corrected
wide field-of-view data contain similar or replicated pixel
values toward the edges of the sensed image swath, where
the observation dimensions are greater than the grid cell
dimensions. Conventional compositing procedures, such as
the maximum NDVI, select gridded observations without
consideration of their viewing geometry, although a view
zenith threshold is often used to remove observations sensed at
high-view zenith angles. Gridded observations sensed in one
orbit with high-view zenith angles may be selected rather than
near-nadir gridded observations sensed in a different orbit.
Over heterogeneous scenes, this causes a reduction in the
effective spatial resolution of the composited data.

III. MODIS I NSTRUMENT

A. MODIS Sensing Geometry

MODIS will orbit the earth on the EOS-AM1 platform
at an altitude of 705 km in a near-polar orbit, with an

inclination of 98.2 and a mean period of 98.9 min. MODIS
has a field-of-view of 110 and will sense all of the equator
every two days. Full coverage of the globe will occur daily
above approximately 30latitude, where different orbit swaths
overlap in the across-track direction as the orbits converge
polewards.

MODIS will acquire earth observations in 36 spectral bands:
29 with 1-km (at nadir) pixel dimensions, five with 500-m
pixels, and two with 250-m pixels. Each scan line of MODIS
data is composed of 1354 1-km, 2708 500-m, and 5416 250-
m observations. The scan lines are elongated because of the
curvature of the earth such that the MODIS swath width is
approximately 2340 km. The instrument’s integration time
matches the data sampling rate so that the 500-m bands are
offset in the along-scan direction by 250 m at nadir relative
to the 1-km bands and the 250-m bands are offset by 125 m
relative to the 500-m bands [13]. MODIS is a whiskbroom
sensor that simultaneously senses ten rows of 1-km detector
pixels, 20 rows of 500-m detector pixels, and 40 rows of
250-m detector pixels as the scan mirror sweeps across track.
Fig. 2(a) illustrates the along- and across-track dimensions of
the MODIS 1-km observation footprint as a function of view
zenith angle. Fig. 2(b) illustrates the typical coverage of three
consecutive scans on the earth’s surface. The whiskbroom
configuration and the forward velocity of the satellite are
configured such that the leading edge of one scan will start
to overlap the trailing edge of the next scan (10% overlap) at
scan angles greater than 24from nadir. This overlap increases
until at the scan edge there is almost 50% overlap [Fig. 2(b)].
This effect is referred to as the “bowtie” effect and is present
in AVHRR data as well as MODIS data [5].

B. MODIS Geolocation Accuracy

MODIS land applications require subpixel geolocation ac-
curacy to support change detection and accurate retrieval
of biophysical parameters over heterogeneous surfaces [22].
MODIS geolocation is performed using onboard measure-
ments of the sensor attitude and position combined with
models of the sensing geometry and the earth to geolocate
each 1-km observation [13]. Terrain effects are modeled using
a global digital terrain model defined with a spatial resolution
of 1 km [23]. The 500-m and 250-m MODIS observations are
geolocated using a fixed offset relative to the 1-km observa-
tions. The geolocation coordinates are defined in latitude and
longitude in the WGS84 geodetic system [24]. The MODIS
geolocation design specification is 0.15 of a 1-km observation
(1 ) with an operational goal of 0.05 of a 1-km observation
(1 ) to be achieved after postprocessing using ground control
points [25]. The operational geolocation goal of 0.05 of a 1-km
band observation corresponds to 5, 10, and 20% of a 1-km,
500-m, and 250-m MODIS nadir observation, respectively.

C. MODIS Product Terminology

Raw MODIS instrument data are processed into a hierarchy
of increasingly refined data product levels that are summarized
in Table I. Raw MODIS data (Level 0) are calibrated and
geolocated (Level 1), then converted into some geophys-
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(a)

(b)

Fig. 2. MODIS sensing geometry: (a) along- and across-track dimensions of the MODIS 1-km observation footprint as a function of view zenith angle
and (b) three consecutive MODIS scans showing the “bowtie” effect (scan 2 is shown shaded).

TABLE I
MODIS DATA PRODUCT LEVEL HIERARCHY

ical parameter of interest (Level 2), and finally, gridded
and/or composited into some earth-based coordinate system
(Level 3). MODIS land product algorithms are used to produce
Level 2 and Level 3 products.

The smallest amount of MODIS land data that is stored
is defined at Levels 1 and 2 as a granule and at Level 3

as a tile. The granules and tiles are defined separately for
different resolutions. A granule corresponds to approximately
5 min of MODIS observations and covers approximately
2340 2000 km. The Level 3 data products are gridded
and stored as fixed, nonoverlapping, earth-located tiles rather
than granules. Each tile has an area of approximately 1200

1200 km (10 10 at the equator) and may be defined
in Integerized Sinusoidal, Goode Homolosine, and Lambert
Azimuthal Equal-Area map projections [26]. The tiles are
illustrated in Fig. 3. Globally, there are 326 tiles that contain
land.

IV. NEW METHOD FOR STORAGE OF GLOBAL

REMOTELY SENSED DATA: MODIS LAND LEVEL 2 GRID

The MODIS land data storage approach is developed to
preserve as much information as possible about each obser-
vation of a grid cell. The approach is purposefully general to
accommodate the multiplicity of MODIS land products that
are being developed and to facilitate future development of
terrestrial remote-sensing algorithms. It may be adapted to
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Fig. 3. MODIS land Level 3 tile structure (shown in the Integerized Sinu-
soidal map projection).

store any remotely sensed data set that can be geolocated to
subpixel accuracy. The approach will be used to store MODIS
land gridded products defined at 1 km, 500 m, and 250 m.

A. Approach

The MODIS land data storage approach is called Level 2
Grid (L2G). The L2G structure stores information concerning
the Level 2 observations that fall within each Level 3 grid cell
over a 24-h (GMT) period. The multiple observations stored
in the L2G structure may be examined by a Level 3 process to
extract only the most relevant observations falling over each
grid cell. In this way, multiple observations intersecting or
overlapping the same grid cell are kept for input to the Level
3 process, which may then be implemented in a more accurate
and robust manner.

The logical structure of the L2G storage approach is illus-
trated in Fig. 4. Each L2G product has the same spatial di-
mensions and contains the same number of rows and columns
of grid cells as its corresponding Level 3 tile. Three types of
data are stored for each observation per L2G grid cell: pointer
information, Level 2 geophysical parameter(s), and sensing
geometry information. The multiple observations that fall over
each grid cell are ranked, and their L2G data are stored so that
the observation that covers most of the grid cell is stored first
and the observation that covers the grid cell the least is stored
last. The ranking is for visualization convenience and has no
impact on the subsequent use of the data. Each data type is
stored as a separate L2G product to ensure efficiencies in data
storage, data access, and data reprocessing. The three data
types are described below.

1) L2G Pointer: In computer science, a pointer is defined
as a variable that holds a memory address. Similarly, the
L2G pointer stores the addresses of the L2 observations
that intersect each L2G grid cell. Information concerning the
observation and grid cell intersection are also stored. Table II
summarizes the stored information.

Granule pointer, line,andsampledefine the Level 2 granule
and the location of the observation within the granule.
and describe the location of the observation center
relative to the grid cell center as a fraction of the observation
line and sample dimensions (Fig. 5). and may
be used to implement subgrid cell accuracy Level 3 processes.
The observation center may fall outside of the grid cell if the

Fig. 4. Logical structure of the Level 2 Grid data storage approach.

TABLE II
POINTER INFORMATION STORED IN THE L2G
POINTER PRODUCT FOR EACH GRID CELL

observation is larger than the grid cell, but it may still be stored
dependent upon the relative observation/grid cell intersection
[this is discussed in Section V(b)]. MODIS land L2G products
are gridded with the grid cell dimension set equal to the nadir
observation dimension so that the grid cell is never larger than
the observation.

Obscovdefines the observation/grid cell intersection area
divided by the area of the observation footprint. The observa-
tion footprint is the surface area sensed by each instantaneous
field-of-view and is computed using simple or complex models
that can be switched in production according to processing
load constraints. The simple observation footprint is modeled
as a convex four-sided polygon with corner locations calcu-
lated by bilinear interpolation of the neighboring geolocated
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Fig. 5. Definition of the location of a grid cell center within an observation
(observation shown shaded).

observation centers. The complex model takes into account
the MODIS PSF and across-track scan rate. Because MODIS
scans at a rapid rate in the across-track direction, the PSF is
modeled as a square area integrated over the entire sampling
interval, giving a triangular PSF across track and a square PSF
along track. The grid cell area is predefined by the Level 3
tile geometry. The observation and grid cell intersection area
is derived using efficient polygon intersection algorithms [27].
Obscovmay be used by Level 3 processes to rank the relative
contributions of each observation to a given grid cell.

Obsptr, rowres, andcolresare stored in the 250-m and the
500-m L2G pointer products to enable navigation between
the different MODIS spatial resolutions. The 250-m and the
500-m data are used to map the 250-m and the 500-m obser-
vations to the 500-m and the 1-km observations, respectively.

2) L2G Geophysical Parameter:The Level 2 geophysical
parameters (e.g., surface reflectance, thermal anomalies, and
snow and sea ice) and ancillary quality assurance information
are stored for each observation that is referenced in the
corresponding L2G pointer product.

3) L2G Sensing Geometry:The viewing geometry (sensor
view zenith and azimuth angles), the slant range (distance from
the sensor to the surface), and the solar geometry (solar zenith
and azimuth angles) are stored for each 1-km observation that
is referenced in the 1-km L2G pointer product. These data
are required for implementation of most of the MODIS land
Level 3 product generation algorithms. Users requiring sensing
geometry information at 500 or 250 m may use obsptr, rowres,
and colres to find the corresponding 1-km observation and then
interpolate the information as required.

B. L2G Production

The L2G products are produced at the end of each day (24-h
period) when the Level 2 products for that day have been
generated. L2G products that only use daytime data will only
store observations sensed during the daylight portion of each
orbit. Fig. 6 illustrates the procedure used to compute the L2G
products. The procedure is performed on a tile-by-tile basis.

The process is started by establishing which Level 2 gran-
ules produced over the 24-h period intersect each Level 3 tile.
This is performed for each tile by geometric intersection of the
predefined tile boundary with the day’s Level 1 geolocation
granules that define the positions of each observation. The
comparison is performed in latitude and longitude coordinates.

Fig. 6. Production of the Level 2 Grid Pointer, Sensing Geometry, and
Geophysical Parameter products. Processing performed on a tile-by-tile basis
(see text for explanation).

All observations that fall within the Level 3 tile are then
projected into the required Level 3 map projection.

The pointer process first computes which observations are
stored for each Level 3 grid cell. To reduce the L2G storage
volume, the ratio of the observation/grid cell intersection to
the grid cell area(cellcov) is computed and used to discard
observations that cover less than a prespecified portion of each
grid cell. The L2G pointer and supplementary geometric infor-
mation (Table II) are calculated for the remaining observations
and written to an L2G pointer product.

The L2G pointer product is examined by a sensing geometry
and geophysical parameter reorganization process to produce
a corresponding L2G sensing geometry and L2G geophysi-
cal parameter product. The sensing geometry reorganization
process reads the Level 1 geolocation granules to pick up the
required 1-km sensing geometry information. The geophysical
parameter reorganization process reads the Level 2 geophysical
parameter granules to pick up the required Level 2 geophysical
parameter(s). These processes are performed for each obser-
vation stored in each grid cell referenced in the L2G pointer
product.

The L2G production procedure saves significant computa-
tional resources for generation of the MODIS Level 3 land
products and for on-demand processing and for reprocessing
of these products. The procedure is performed once instead
of separately for each Level 3 process. For example, all
Level 3 processes that require gridded land surface reflectance
data read the same L2G land surface reflectance products
and do not need to independently locate, combine, intersect,
and geometrically correct individual Level 2 land surface
reflectance granules. If the geophysical parameters need to
be reprocessed, unless the geolocation data have changed,
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Fig. 7. Mean percent error inobscovand cellcov, with respect to MODIS view zenith angle, given the MODIS 1� geolocation error equivalent to 0.05
of a 1-km observation. Errors shown for MODIS 1-km, 500-m, and 250-m MODIS bands.

only the Level 2 geophysical parameter granules need to be
reprocessed, as the L2G pointer products remain unchanged.

V. MODIS L2G CONSIDERATIONS

This section discusses some specific aspects of the L2G
approach, with respect to sensitivity to the MODIS geolocation
accuracy and data storage volume. The L2G approach is
then compared with a more conventional approach of storing
individual orbits of nearest-neighbor resampled data.

A. Geolocation Accuracy

The L2G approach can only be meaningfully implemented
if the observations are geolocated to subpixel accuracy. If
the MODIS geolocation accuracy is only as good as the
design specification (0.15 of a 1-km observation 1and
not the operational goal (0.05 of a 1-km observation 1,
the L2G approach may not be suitable for storage of the
500-m bands and will not be suitable for storage of the
250-m bands. This is because the design specification ge-
olocation accuracy may result in geolocation errors that are
larger than the 250-m observation dimension and larger than
half the 500-m observation dimension. Subpixel geolocation
errors will be propagated in a directly proportional manner
into the L2G subpixel data They may
also affect which observations are stored in each grid cell.
This latter issue is not a problem for the storage of single
orbits of MODIS data. This is because relative geolocation
errors between adjacent observations and between consecutive
scan lines can be assumed to be negligible (high-temporal
frequency attitude perturbations are damped by stabilization

of the sensor platform, and surface relief distortions are
likely to be correlated between neighboring observations).
Consequently, adjacent observations sensed in the same orbit
will be stored in the same or adjacent grid cells regardless of
the subpixel geolocation accuracy. However, this may not be
the case for observations falling over the same grid cell but
sensed by different satellite overpasses. This is because the
geolocation errors in whiskbroom sensor data are a function
of the viewing geometry and of time-varying errors in the
sensor position and attitude [28].

A sensitivity analysis was performed to examine the impact
of MODIS geolocation errors uponobscovandcellcov. Obscov
defines the ratio of the observation/grid cell intersection to
the observation area and is of importance to the L2G user,
as it may be used to rank the relative contributions of the
observations that fall in each grid cell.Cellcov defines the
ratio of the observation/grid cell intersection to the grid cell
area and is used to determine which observations are stored
for each L2G grid cell.

Fig. 7 illustrates the mean percentage error inobscovand
cellcov, with respect to the MODIS viewing geometry, given
the MODIS 1 geolocation error of 0.05 of a 1-km observa-
tion. The errors are shown for the 1-km, 500-m, and 250-m
MODIS bands. The errors were computed using the simple
observation footprint model (convex four-sided polygon) with
the observation dimensions scaled according to the view zenith
angle [Fig. 2(a)]. The orientation of the grid cells and the
observation footprints at 1 km, 500 m, and 250 m were
considered to be in perfect alignment. For each view zenith
angle, the grid cell was translated across the observation in
steps of one hundredth of the observationand dimensions.
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TABLE III
MEAN, MINIMUM , AND MAXIMUM OF THE MEAN PERCENTAGE ERRORS IN

obscovAND cellcovOVER THE MODIS FIELD-OF-VIEW FOR MODIS 1-km,
500-m,AND 250-m BANDS, GIVEN THE MODIS 1� (0.05 OF A 1-km
OBSERVATION) AND 2� (0.1 OF A 1-km OBSERVATION) GEOLOCATION

ERRORS. PERCENTAGE ERRORSEXPRESSED TOONE DECIMAL PLACE

At each of the 10 000 positions, the grid cell coverage and the
observation coverages were computed and compared to eight
misaligned coverages. The misalignments were simulated by
shifting the grid cell center in eight compass directions by an
appropriate or diagonal component of the 0.05 of a 1-km
observation geolocation error. The mean of the absolute differ-
ences between the aligned and misaligned coverage estimates
over all positions were then calculated for each MODIS view
zenith angle.

For all MODIS bands, the grid cell coverage(cellcov)errors
increase and the observation coverage(obscov)errors decrease
with increasing view zenith angle (Fig. 7). This is because
the area of the observation footprint increases at greater view
zenith angles, but the grid cell dimension remains fixed.
The errors are greater for the higher spatial resolution bands
because the geolocation error corresponds to a larger fraction
of each observation. The mean, minimum, and maximum of
the mean percentage errors inobscovand cellcov over the
MODIS swath are summarized in Table III for MODIS 1and
2 geolocation errors. Assuming that the MODIS geolocation
errors are normally distributed, geolocation errors less than
the 1 error (0.05 of a 1-km observation) and less than the 2
error (0.1 of a 1-km observation) will occur approximately 68
and 95% of the time, respectively. The maximum 2250-m
obscoverror is 7.9%, and the maximum 2250-m cellcov
error is 15.6%. L2G users should consider theobscoverrors
according to their application requirements. Thecellcoverrors
are of importance in considering L2G data storage volumes,
which are discussed below.

B. L2G Data Storage Volume

The science requirements of the MODIS land product
generation algorithms will be met without storing all MODIS
observations of the earth over a 24-h period. This is achieved
by discarding all observations that cover less than a certain
portion of each grid cell, storing only land observations, and
discarding certain MODIS land products over polar regions
(above 80 latitude N and 60 latitude S) where they are not
relevant.

The L2G data storage volume is primarily reduced by
discarding all observations that cover less than a certain

TABLE IV
MEAN NUMBER OF OBSERVATIONS STORED PER L2G GRID CELL ACROSS A

MODIS SWATH USING DIFFERENT cellcovTHRESHOLDS. CellcovDEFINES THE

RATIO OF THE OBSERVATION/GRID CELL INTERSECTION TO THEGRID

CELL AREA AND IS USED TO DETERMINE WHICH OBSERVATIONSARE

STORED FOREACH L2G GRID CELL. ONLY OBSERVATIONS COVERING

A GRID CELL WITH cellcov VALUES GREATER THAN A FIXED

THRESHOLDARE STORED. DATA EXPRESSED TOTWO DECIMAL PLACES

portion of each grid cell. This is implemented by only storing
observations covering a grid cell withcellcovthreshold values
greater than a fixed threshold. The threshold was set by
consideration of the subsequent utility of the L2G data and
potential data storage savings. A 24%cellcovwas adopted for
storage of the MODIS L2G products because it is the highest
threshold that can be used without completely discarding
observations. In the case when an observation intersects four
adjacent grid cells equally, the 24%cellcov threshold will
ensure that the observation is not discarded from the L2G
data set (but instead is stored in all four grid cells). Table IV
shows the mean number of observations stored per grid cell
across a MODIS swath using differentcellcovthresholds. The
data were calculated assuming a Level 3 grid lying parallel to
the MODIS swath and in the same manner as theobscovand
cellcov error analysis. As thecellcov threshold increases, the
mean number of observations stored per grid cell decreases.
Because of the increasing overlap between consecutive scan
lines further from nadir [Fig. 2(b)], an average of four obser-
vations are stored per grid cell across the image swath if all
observations are stored (0%cellcovthreshold). Using the 24%
cellcovthreshold gives approximately two observations stored
across the image swath (Table IV) and, therefore, reduces the
L2G storage volume by approximately 50%.

Thecellcovsensitivity to MODIS geolocation errors (Fig. 7,
Table III) may result in the incorrect allocation of observations
to grid cells. This implies a reduction in the utility of the L2G
data as the andobscovpointer information
will be defined, with respect to the incorrect grid cell. Fig. 8
illustrates the mean percentage of observations incorrectly
stored per L2G grid cell using acellcov threshold of 24%
and assuming MODIS 1 and 2 geolocation errors. The
data were calculated in a similar manner as theobscovand
cellcov error analysis. As before for each view zenith angle,
a grid cell was translated across the observation in steps of
one hundredth of the observationand dimensions. At each
of the 10 000 positions,cellcovwas computed and then com-
pared with thecellcovvalues of eight misaligned observations
simulated by shifting the grid cell center in eight compass
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Fig. 8. Mean percentage of observations incorrectly stored per grid cell in the L2G structure, given the MODIS landcellcov threshold of 24%. The data
are shown, with respect to the MODIS view zenith angle, given the MODIS 1� geolocation error (equivalent to 0.05 of a 1-km observation) and given the
MODIS 2� geolocation error (equivalent to 0.1 of a 1-km observation) for MODIS 1-km, 500-m, and 250-m MODIS bands.

directions by an appropriate or diagonal component of
the observation geolocation error. The misaligned observations
were considered to be incorrectly omitted if theircellcovvalue
was less than or equal to the 24%cellcov threshold, while
the aligned observationcellcov value was greater than the
threshold. The misaligned observations were considered to be
incorrectly retained if theircellcovvalue was greater than the
24% cellcov threshold, while the aligned observationcellcov
value was less than or equal to the threshold. The mean number
of misaligned observations incorrectly stored were computed
at each view zenith angle and are illustrated in Fig. 8. The
mean number of observations incorrectly stored increase with
increasing view zenith angle, geolocation error, and spatial
resolution. Less than 3, 6, and 10% of the 1-km, 500-m, and
250-m observations, respectively, are incorrectly stored given
a MODIS 1 geolocation error. MODIS 2geolocation errors
will occur only rarely but will cause at most 6, 10, and 16.5%
of the 1-km, 500-m, and 250-m observations to be incorrectly
stored, respectively. An average of approximately 15% of the
250-m observations will be incorrectly stored in the L2G data
given a MODIS 2 geolocation error.

Table V summarizes the global Level 2, L2G, and Level
3 daily data storage volumes of the MODIS land surface
reflectance product. The table demonstrates the large differ-
ence between the Level 2 and L2G data storage requirements
and the efficiencies made by only storing land and nonpolar
regions. The L2G product requires 18 times more data storage
than the Level 2 product if all observations of the globe are
stored (0%cellcov threshold). This is because there are more
grid cells than there are MODIS observations (due to the
viewing geometry, constant scan rate, and earth curvature)

TABLE V
GLOBAL DAILY (12 h) LAND SURFACE REFLECTANCE DATA STORAGE

VOLUMES FOR LEVEL 2, LEVEL 2G* (cellcovTHRESHOLD= 0%), LEVEL

2G (cellcov THRESHOLD= 24%), AND LEVEL 3 PRODUCTS. DATA

STORAGE VOLUMES IN Gbytes PER DAY. (THE LEVEL 3 PRODUCT

IS A SUMMARY OF EIGHT DAYS OF L2G DATA, SO THAT IT HAS AN

AVERAGE DAILY VOLUME OF AN EIGHTH OF THE VOLUME SHOWN)

and because of the additional pointer and supplementary
geometric information stored for each observation. Discarding
observations using the 24%cellcovthreshold reduces this mul-
tiplication factor to 8.9. The L2G global storage requirements
are reduced by approximately 43% by eliminating all nonland
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observations and are reduced again by approximately 14% by
not storing polar observations.

C. Comparison of L2G Data Storage Approach with
a Conventional Data Storage Approach

Conventionally individual orbits of satellite data are geomet-
rically corrected and gridded using nearest-neighbor resam-
pling, which does not alter the radiometry of the data. Different
orbits sensed over a day may be stored separately or together
as a three dimensional data structure, with two dimensions
defining the spatial extent of the data and the third dimension
defining the different orbits. This conventional approach does
not handle the bowtie effect, precludes opportunities for users
to take advantage of the unresampled data, and makes data
reprocessing and on-demand data processing resource inten-
sive. The L2G approach has several scientific advantages over
the conventional approach, with respect to the subsequent
utility of the data. These are illustrated in Section VI for
gridding and compositing applications. In particular, the L2G
approach allows the user to take advantage of the high-MODIS
geolocation accuracy. The subgrid cell geometry of nearest-
neighbor resampled observations will be unknown as nearest-
neighbor resampling may introduce geometric discontinuities
up to a maximum of of the observation dimension.
The L2G approach stores the subgrid cell geometry for each
observation obscov). Both the conventional
and the L2G approach are sensitive to geolocation errors. The
maximum MODIS 2 geolocation error will cause no more
than an 8% error inobscov(Table III) and will be propagated
in a directly proportional manner into and .
For sufficiently large geolocation errors, observations may be
incorrectly assigned to grid cells. This will make the L2G
approach less useful than the conventional approach as the
L2G sub grid cell geometric information will be redundant
and stored unnecessarily. This will occur on average for
approximately 15% of the L2G 250-m data, given a MODIS
2 geolocation error.

The primary disadvantage of the L2G data storage approach
is that of increased data storage. For production systems that
produce many products in parallel, such as MODIS land,
processing efficiencies gained by adoption of a common L2G
structure will outweigh data storage costs. It is recognized,
however, that this balance will not be found for the production
and storage of individual products.

VI. MODIS LAND GRIDDING AND COMPOSITING

The generic MODIS land gridding and compositing ap-
proach described in this section takes advantage of the L2G
data structure and illustrates several of its benefits. L2G tiles
are examined to extract only the most relevant observations
falling under each output grid cell. This allows the efficient
geometric gridding and compositing of remotely sensed data
sets without loss of potentially important subpixel data and
precludes some of the problems with conventional methods
described in Section II.

Fig. 9. Compositing a Level 3 geophysical parameter tile fromn days of
Level 2 data using the Level 2 Grid structure.

A. L2G Gridding Approach

The different MODIS land map projections are processed
efficiently by transforming the geolocated coordinates of the
MODIS observations into the required map projection and
then extracting the required L2G geophysical parameters for
gridding. This is advantageous, as the observations are only
resampled once, avoiding unnecessary degradation of the grid-
ded data. Similarly, a sophisticated user may define a different
map projection by transforming the geolocated observation
coordinates and then gridding the L2G geophysical parameters.

A Level 3 gridded product may be produced using the
L2G structure from a single orbit of data or from multiple
observations sensed by different orbits and resulting from the
bowtie effect. Different observations of the same grid cell can
be filtered to discard unwanted observations by examination
of corresponding L2G sensing geometry and geophysical
parameter tiles.

The L2G structure will enable new gridding techniques to
be developed. Conventional resampling algorithms, such as
the cubic convolution resampling function, are based upon
sampling theorems that assume that the data are sampled
uniformly in space [8]. The information concerning the obser-
vation/grid cell intersection and their subpixel position may
be used to implement new techniques designed to compensate
for the changing sampling density found in MODIS data. Such
information may be used to perform image restoration. For
example, restoration techniques may be applied to multiple
observations of the same grid to enable the production of
higher spatial-resolution gridded products [29].

B. L2G Compositing Approach

Conventionally, different orbits of data are geometrically
corrected prior to compositing. The gridding process will
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(a) (b)

(c) (d)

Fig. 10. L2G midlatitude example of a single granule of simulated MODIS data sensed over the Chesapeake Bay, MD. A region of 256� 256 1-km grid
cells is shown, corresponding to approximately 2� 2� and defined in the Integerized Sinusoidal projection, illustrating: (a) the number of observations, (b)
the observation sample number for layer one, (c) the�sample for layer one, and (d) theobscovvalue of the observation stored in layer one. Multiple
observations of the same grid cell are ranked and stored in layers according to theobscovvalue (the observation/grid cell intersection area divided by the
area of the observation footprint), with layer one containing the observation with the highestobscovvalue at that grid cell.

change the geometric and/or radiometric structure of the
gridded observations and may discard potentially useful obser-
vations. The L2G structure allows the compositing procedure
to select or combine original ungridded observations, avoiding
some of these problems.

Fig. 9 illustrates how MODIS compositing is performed by
reading the daily L2G tiles for each of the input parameters
required by the Level 3 compositing process. Only those
observations most relevant to the compositing process within
each grid cell are selected for inclusion in the composite. For
example, observations sensed far from nadir, with different

atmospheric and cloud conditions, or with poor geolocation
and poor geophysical parameter quality may be removed by
examination of the corresponding L2G sensing geometry and
geophysical parameter data.

VII. L2G STORAGE EXAMPLES

The L2G algorithm has been implemented as part of the
MODIS production software. For illustrative purposes, the
software was run on simulated MODIS data for a midlatitude,
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(e) (f)

Fig. 10. (Continued.) L2G midlatitude example of a single granule of simulated MODIS data sensed over the Chesapeake Bay, MD. A region of 256
� 256 1-km grid cells is shown corresponding to approximately 2� 2� and defined in the Integerized Sinusoidal projection, illustrating: (e) theobscov
value of the observation stored in layer two and (f) theobscovvalue of the observation stored in layer three. Multiple observations of the same grid cell
are ranked and stored in layers according to theobscovvalue (the observation/grid cell intersection area divided by the area of the observation footprint),
with layer one containing the observation with the highestobscovvalue at that grid cell.

single granule case and for a polar, multiple granule case. In
both cases, acellcov threshold of 24% was used.

A. Midlatitude, Single Granule Example

Fig. 10 shows elements of the L2G structure for simu-
lated 1-km observations sensed by a single granule over the
Chesapeake Bay, lying close to Washington DC. A region of
256 256 1-km grid cells corresponding to approximately
2 2 and defined in the Integerized Sinusoidal projection
is shown. The data were stored so that for each grid cell,
the observation with the maximumobscovvalue was stored
in layer one and the observations with progressively smaller
obscov values were stored in layers two, three, four, etc.
Fig. 10 shows (a) the number of observations per grid cell,
(b) the observation sample numbers forobscovlayer one, (c)
the for obscov layer one, and (d)–(f) theobscov
values for layers one to three, respectively.

The number of observations per grid cell vary from one
to five, with a mean of 1.73 over the region shown in
Fig. 10(a). Up to four observations are expected per grid cell
using acellcov threshold of 24%. However, the observations
occur toward the edge of the granule where they overlap in
consecutive scans, giving up to five observations per grid cell.
The scan overlap regions appear as dark near-horizontal lines
that decrease in thickness toward nadir (sample 677) and show
the scanning orientation. The observation sample numbers in
Fig. 10(b) illustrate this, showing increasing sample numbers
from the west edge (sample 275) to the east edge (sample
680) of the region.

The data shown in Fig. 10(c) have a sawtooth pat-
tern with values varying over a1- 1 range. The frequency of

the sawtooth pattern is of the order of three grid cells per cycle
at the north of the region and ten grid cells per cycle in the
southeast corner of the region. This pattern reflects the change
in the subpixel location of the observation centers relative
to the regular grid cell locations. A strong moiré pattern is
observed in parts of Fig. 10 and in Fig. 11. This is produced
by a beat pattern that arises if an image contains periodicities
that are close to half the display sampling frequency.

The obscov layers shown in Fig. 10(d)–(f) contain two
patterns, a combination of the scan overlap seen in Fig. 10(a)
and the sawtooth pattern seen in Fig. 10(c). Most of the
granule observations are stored in layers one and two, with
fewer observations stored in layer three. Layer three contains
observations that occur primarily in the scan overlap region.
Layers four and five are not shown, as less than 1% of their
grid cells contained observations. The meanobscovvalue is
44% in layer one, 25% in layer two, and 21% in layer three.

B. Polar Multiple Granule Example

Fig. 11 shows elements of the L2G structure for two over-
lapping, simulated granules sensed on the same day at 72N.
A region of 256 256 500-m grid cells is shown, correspond-
ing to approximately 1 1 , defined in the Lambert Azimuthal
Equal-Area projection. The observations were simulated as
being sensed at 500-m resolution. Fig. 11 shows (a) the
number of observations per grid cell, (b) the sample number,
and (c)obscovvalues for layer one (the layer storing for each
grid cell the observation with the maximumobscovvalue).

The two sets of lines seen in Fig. 11(a) show the different
orientations of the two overlapping granules. One granule is
seen by the narrow dark-gray lines running nearly diagonally
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(a) (b)

(c)

Fig. 11. L2G high-latitude example of two overlapping granules of simulated MODIS data sensed on the same day at 72� N. A region of 256� 256
500-m grid cells is shown, corresponding to approximately 1�1� defined in the Lambert Azimuthal Equal-Area projection illustrating: (a) the number of
observations, (b) the observation sample number for layer one, and (c) theobscovvalue of the observation stored in layer one. Multiple observations of the
same grid cell are ranked and stored in layers according to theobscovvalue (the observation/grid cell intersection area divided by the area of the observation
footprint), with layer one containing the observation with the highestobscovvalue at that grid cell.

across the region, and the other is seen by the more vertical
lines. The lines correspond to the regions of scan overlap
within each granule. There are a maximum of eight obser-
vations per grid cell that occur where the overlap regions of
the two granules intersect. The mean number of observations is
3.6, roughly twice the number in the single granule example,
as expected.

The sample number data shown in Fig. 11(b) provide a good
indication of which granule each of the observations stored
in obscovlayer one came from. The sample numbers from
one granule vary near nadir (sample number 1354) from 935

to 1270 and are displayed as light points, while the sample
numbers of the other granule vary from 2098 to 2306 and are
displayed as darker points.

Fig. 11(c) shows theobscovvalues for the first layer. These
data have less-pronounced striping and moiré patterns and a
higher meanobscovvalue of 55% than the single granule
data shown in Fig. 10(d). This illustrates that, where MODIS
orbits overlap more frequently, the likelihood of obtaining
a representative sample of an output Level 3 grid cell will
increase.
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VIII. PLANNED NEAR-TERM IMPROVEMENTS

There are several areas where future work is needed on
the L2G approach: a more complete observation model, deter-
mining the optimum criteria for keeping observations, faster
algorithms, and detailed comparisons of new algorithms with
heritage algorithms.

The MODIS observation footprint model will be enhanced
to take into account the proper along-scan nesting of the
higher resolution 250- and 500-m bands within the coarser
1-km bands. Higher order approximations of the system PSF
are required to model the atmospheric PSF and instrument
characteristics, such as optical blur. The effects of terrain on
the 500- and 250-m observations will be investigated once
suitable global terrain models are available at 500- and 250-
m spatial resolutions. The sensitivity of the L2G approach,
with respect to MODIS geolocation errors, will be investigated
using the improved observation model.

The methodology for reducing the number of observations
stored per grid cell will be examined, with respect to the results
of post-MODIS launch geolocation characterization activities.
Since the L2G algorithm was developed primarily for MODIS
land applications, optically thick cloud pixels are not of
interest. Consequently, computing and data storage resources
may be saved by eliminating cloudy pixels prior to generation
of L2G products. This may provide approximately a 50%
saving, as it is conservatively estimated that approximately
50% of the globe is cloud covered at any one time [30].
However, until the MODIS cloud screening algorithms are
mature, cloudy pixels will be kept in the L2G products.

IX. CONCLUSION

The methodology used to store a number of the MODIS
land data products and enable their efficient processing and
reprocessing has been described. The methodology, termed
L2G, has several advantages over conventional approaches
used to store global coverage remotely sensed data sets. It
requires that the remotely sensed observations are geolocated
to subpixel accuracy, and it stores the subpixel location and
the relative intersection area of the observations falling over
each output grid cell over a 24-h period. These information
will enable existing terrestrial remote-sensing algorithms to
be more robustly and accurately implemented and may aid
the development of new algorithms that exploit multiple
observations of the surface. The MODIS land gridding and
compositing approach that uses this information is described
to illustrate these points. MODIS land data products and the
Level 2 grid software used to produce them will be made
available to the public as part of the EOS data and software
distribution policy. Other instruments and disciplines may find
this a useful tool to fully exploit satellite data, especially
instruments that observe the surface over a range of viewing
geometries, e.g., Across Track Scanning Radiometer (ATSR)
[31], [32] and MISR [33].
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