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MODIS Land Data Storage, Gridding, and
Compositing Methodology: Level 2 Grid

Robert E. Wolfe, David P. Roy, and Eric Vermotdember, IEEE

Abstract—The methodology used to store a number of the sensed by the Moderate Resolution Imaging Spectroradiometer
Moderate Resolution Imaging Spectroradiometer (MODIS) land  (MODIS).

products is described. The approach has several scientific and MODIS is planned for launch onboard the moring (AM1)
data processing advantages over conventional approaches used

to store remotely sensed data sets and may be applied to anyand afternoon (PM1) Earth Observing System (EOS) platforms

remote-sensing data set in which the observations are geolo-in 1998 and 2000, respectively [1]. MODIS will sense all
cated to subpixel accuracy. The methodology will enable new of the earth’s surface in 36 spectral bands spanning the
algorithms to be more accurately developed because important ysisiple (0.415.m) to infrared (14.235:m) spectrum at nadir

information about the intersection between the sensor obser- spatial resolutions of 1 km, 500, and 250 m. MODIS will
vations and the output grid cells are preserved. The method-

ology will satisfy the very different needs of the MODIS land Provide both day and night full earth coverage every two
product generation algorithms, allow sophisticated users to de- days and full coverage every day for latitudes above ap-
velop their own application-specific MODIS land data sets, and proximately 30. MODIS will be the primary EOS sensor
enable efficient processing and reprocessing of MODIS land for providing data on global biospheric dynamics and will
products. A generic MODIS land gridding and compositing d l dat d by inst ¢ h th
algorithm that takes advantage of the data storage structure reduce refiance “PO” ata sgnse y instruments such as the
and enables the exploitation of multiple observations of the Advanced Very High Resolution Radiometer (AVHRR). The
surface more fully than conventional approaches is described. MODIS land science team is currently developing remote-
The algorithms are illustrated with simulated MODIS data, sensing algorithms for deriving global time-series data prod-
and the practical considerations of increased data storage are ;s on various terrestrial geophysical parameters that will be
discussed. . -
used by the earth science community [2], [3]. The products
include land surface reflectance, land surface temperature,
|. INTRODUCTION spectral vegetation indexes, snow and sea ice cover, fire
HE FUNCTIONAL design of satellite data proolucticmdetectlon, land cover and land cover change, spectral albedo,

systems is based upon the processing of raw instrumghq'recnonal reflectance characterization, and a number of

data into a hierarchy of increasingly refined data produc .ophysmall variables that will contribute to an improved
These production processes discard large amounts of ddfgerstanding of global carbon cycles, hydrologic balances,
throughout the processing chain. This forces the user comnifd Piogeochemical cycles.
nity to use data that may be inappropriate for their application "¢ MODIS land data storage methodology was developed
requirements, precludes opportunities for sophisticated usétsSatisfy the diverse needs of the MODIS land product
to take advantage of the entire sensed data set, and mdkgiaeration algorithms. The requirements of the methodology
data reprocessing and on-demand data processing reso@f€el0 €nable efficient processing and reprocessing of MODIS
intensive. As new remote-sensing systems with improvénd products, support flexible subsequent application of the
geometric and radiometric quality and improved calibratiof@t@, provide users with all of the original, sensed MODIS
stability become available, the requirement for data stdpbservations and their subpixel geolocapon mformatlon, and
age structures that will support flexible application-specifig!PPort the development of better science using MODIS
uses of the sensed data will increase. This paper descrif¥! data. Constraining these is the requirement that the
the data storage methodology developed for terrestrial d&§thodology does not prohibitively increase data storage costs
and that mechanisms are in place to accommodate evolving
data storage resources.
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Fig. 1. Gridding process and examples of forward and inverse mapp(lﬂg‘;
between the input-sensed observation space (left) and the output geometridItCh exactly. o .
correct space (right). In the forward gridding approach, sometimes known as the

direct method [6] or pixel carryover [7], each observation
is allocated to the grid cell that the observation center falls

remote-sensing algorithms to be more accurately develop¥fhin. When two or more observations map into the same
A generic MODIS land gridding and compositing algorithrrgr'd cell, a decision is made as to which observation to keep;

that takes advantage of the data storage structure is descrip@¢flly, the observation falling closest to the grid cell center
to illustrate these points. is selected. The forward gridding approach is computationally

inefficient as grid cells may be addressed more than once.
In the inverse gridding approach, sometimes known as the

Il. CONVENTIONAL STORAGE OF GLOBAL SATELLITE indirect method [6] or pixel filling [7], each grid cell center
REMOTELY SENSED DATA: GRIDDED AND COMPOSITEDDATA  is mapped into the sensed image. The grid cell value is then

Commonly only raw and highly processed, global satellité)terpolated from a local neighborhood of surrounding obser-
remotely sensed data sets are archived and distributedv@ions. The interpolation process is known as image resam-
the user community. The processed data sets are typicdlling. Nearest-neighbor resampling is the simplest resampling
geometrically corrected data that have been mosaicked dngthod and works by allocating the value of the nearest
temporally composited into a single representation of tigpservation to the grid cell. More sophisticated resampling
surface. The geometric correction process reconstructs féactions were developed to approximate the theoretically op-
motely sensed data into a new image grid with known eartimal sinc resampling function, which cannot be implemented,
based coordinates that may be navigated like a map. Satefifeit requires an infinitely large pixel neighborhood [8]. These
data must be geometrically corrected to remove geometﬁ[j’]ctions include bilinear, cubic convolution, and truncated
distortions caused by the instrument viewing geometry, tisnc resamplers [8]-[10].
curvature of the earth, surface relief, and perturbations in theThe forward gridding approach and the nearest-neighbor
motion of the instrument relative to the surface. Geometri€sampling approach produce the same result. Both are com-
correction can be considered a two-stage process. First, thenly used because they are computationally simple and do
sensed image observations are geolocated, and then secomdl alter the values of the original sensed data. They may,
the geolocated observations are gridded into an output gi@wever, introduce subpixel geometric discontinuities (up to a
Different orbits of geometrically corrected satellite data maypaximum of+/2/2 of an observation dimension) and discard
then be combined using a compositing routine. Compositéiservations completely. The more complex, inverse-gridding,
data are assumed to be representative of the surface overr@s@mpling methods alter the radiometric values of the original
compositing period and to have reduced cloud and atmosph&@fised data [9]-[11].
contamination [4]. The gridding and compositing procedures None of the gridding approaches consider the degree of

and some terminology used in the rest of this paper ageerlap of different observations that may fall within each
described below. grid cell. The forward gridding and the nearest-neighbor

resampling methods select only a single observation per grid

o cell. The other resampling methods assume that the ob-

A. Gridding servations are distributed evenly across the earth’s surface.
The allocation of geolocated image observations into dfowever wide field-of-view, whiskbroom sensors, such as

output image grid is termed gridding and is illustrated ithe AVHRR [5], [12] and MODIS [1], [13], have progres-
Fig. 1. The pixels defined by the output image grid will bsively overlapping observations further from nadir. Image-
referred to as grid cells. The left half of Fig. 1 illustrates theestoration-based approaches that use knowledge of the system
input observation space viewed by the instrument and shoRSF and the observation/grid cell intersection geometry have
the dimensions and location of each sensor observation on lfl@en suggested [14], [15]. Restoration techniques have not
earth’s surface. In practice, the observations will have elliptichken implemented operationally because of difficulties reliably
shapes as the surface area convolved with the system pdietining the system PSF (the convolution of the dynamic
spread function (PSF) defines the area that is physically sensedrument PSF with a variable atmospheric PSF) and because
[5]. The right half of Fig. 1 illustrates how these observationthey are susceptible to image noise [15].
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B. Compositing inclination of 98.2 and a mean period of 98.9 min. MODIS

Compositing procedures are applied to time series of gerba_ls a field-of-view of 110 and will sense all of.the equato.r
metrically correct image data in an attempt to produce a sin§iée"y two days. Full coverage of the globe will occur daily
representative data set. They are typically applied to multigh?©ve approximately 30atitude, where different orbit swaths

orbits of data sensed within the same day and orbits of d&@%eriap in the across-track direction as the orbits converge

sensed over a period of several days to a month. They eitR@{ewards.

select the “best” observation of a grid cell based on someMODIS will acquire earth observations in 36 spectral bands:
criteria or combine multiple observations of the same grid ceft? With 1-km (at nadir) pixel dimensions, five with 500-m
Compositing criteria have included the maximum normalizdyX€!s; and two with 250-m pixels. Each scan line of MODIS
difference vegetation index (NDVI), maximum brightness tenflat@ is composed of 1354 1-km, 2708 500-m, and 5416 250-

perature, maximum surface temperature, maximum diﬁeren%observations. The scan lines are elongated becauge of_the
in red and near-infrared reflectance, minimum scan ang%!rvature of the earth such that the MODIS swath width is

maximum thermal radiance, and combinations of these [@jpproximately 2340 km. The instrument’s integration time

[16]-[19]. The criteria are designed to ideally select from th&iatches the data sampling rate so that the 500-m bands are
time series only near-nadir observations that have reducdfFet in the along-scan direction by 250 m at nadir relative
cloud and atmospheric contamination. However, some & the 1-km bands and the 250-m bands are offset by 125 m
these criteria have been shown to select AVHRR observatid§idtive to the 500-m bands [13]. MODIS is a whiskbroom
due to bidirectional reflectance effects rather than reducs@nsor that simultaneously senses ten rows of 1-km detector
atmospheric or cloud contamination [17], [20]. Compositing'xels* 20 rows of 500-m detector pixels, and 40 rows of
algorithms that model the bidirectional reflectance have begnO-M detector pixels as the scan mirror sweeps across track.
developed to compensate for this problem and combine all /8- 2(@) illustrates the along- and across-track dimensions of
most of the observations of the grid cell [21]. The reliance §f€ MODIS 1-km observation footprint as a function of view
compositing procedures upon geometrically correct data mé?,nlth an_gle. Fig. 2(b) illustrates the typical coverage.of three
introduce biases caused by registration errors and by chang@asecutive scans on the earth’s surface. The whiskbroom

in the effective spatial resolution of the data across the imag@nfiguration and the forward velocity of the satellite are
swath. configured such that the leading edge of one scan will start

Registration errors between colocated grid cells sensedifhoveriap the trailing edge of the next scan (10% overlap) at
different orbits will interact with the compositing criteria toSCaN @ngles greater than"Zdom nadir. This overlap increases
introduce compositing biases over heterogeneous scenes. il &t the scan edge there is almost 50% overlap [Fig. 2(b)].
example, AVHRR time series are commonly composited usiﬂ— is effect is referred to as the “bowtie” effect and is present
the maximum NDVI. Gridding and geolocation errors foun§! AVHRR data as well as MODIS data [5].
between colocated grid cells may lead to the preferential se-
lection of vegetated grid cells (high NDVI) over nonvegetated. MODIS Geolocation Accuracy

grid cells (low NDVI) found in different orbits. This may MODIS land applications require subpixel geolocation ac-
enlarge the boundaries of vegetation features, cause smegllacy to support change detection and accurate retrieval
isolated nonvegetated features to shrink or disappear, &jthiophysical parameters over heterogeneous surfaces [22].
smooth heterogeneous vegetated/nonvegetated scenes. \MODIS geolocation is performed using onboard measure-
Typically, the grid cell dimensions are set equal to the nadffents of the sensor attitude and position combined with
observation dimensions. As a result, geometrically correctgghdels of the sensing geometry and the earth to geolocate
wide field-of-view data contain similar or replicated pixepach 1-km observation [13]. Terrain effects are modeled using
values toward the edges of the sensed image swath, whgi§iobal digital terrain model defined with a spatial resolution
the observation dimensions are greater than the grid cgfl1 km [23]. The 500-m and 250-m MODIS observations are
dimensions. Conventional compositing procedures, such @splocated using a fixed offset relative to the 1-km observa-
the maximum NDVI, select gridded observations withoujons. The geolocation coordinates are defined in latitude and
consideration of their viewing geometry, although a vieyyngitude in the WGS84 geodetic system [24]. The MODIS
zenith threshold is often used to remove observations senseged|ocation design specification is 0.15 of a 1-km observation
high-view zenith angles. Gridded observations sensed in 91§ with an operational goal of 0.05 of a 1-km observation
orbit with high-view zenith angles may be selected rather thaf);) to be achieved after postprocessing using ground control
near-nadir gridded observations sensed in a different ortbints [25]. The operational geolocation goal of 0.05 of a 1-km
Over heterogeneous scenes, this causes a reduction inghgq observation corresponds to 5, 10, and 20% of a 1-km,
effective spatial resolution of the composited data. 500-m, and 250-m MODIS nadir observation, respectively.

[ll. MODIS INSTRUMENT C. MODIS Product Terminology

i Raw MODIS instrument data are processed into a hierarchy

A. MODIS Sensing Geometry of increasingly refined data product levels that are summarized
MODIS will orbit the earth on the EOS-AM1 platformin Table I. Raw MODIS data (Level 0) are calibrated and

at an altitude of 705 km in a near-polar orbit, with ameolocated (Level 1), then converted into some geophys-
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Fig. 2. MODIS sensing geometry: (a) along- and across-track dimensions of the MODIS 1-km observation footprint as a function of view zenith angle
and (b) three consecutive MODIS scans showing the “bowtie” effect (scan 2 is shown shaded).

TABLE | as a tile. The granules and tiles are defined separately for
MODIS Data PrODUCT LEVEL HIERARCHY different resolutions. A granule corresponds to approximately
5 min of MODIS observations and covers approximately
2340 x 2000 km. The Level 3 data products are gridded
and stored as fixed, nonoverlapping, earth-located tiles rather
than granules. Each tile has an area of approximately 1200
x 1200 km (10x10° at the equator) and may be defined
Level 2 Geophysical parameter data retrieved from the Level | data by application of in Integerized Sinusoidal, Goode HomOIOSine, and Lambert
geophysical parameter algorithms. Retrieved data are at the same location AZimUthaI EqUaI'Area map prOjeCtionS [26] The tileS are

illustrated in Fig. 3. Globally, there are 326 tiles that contain
Level 3 Geometrically corrected Level 2 data, which have been gridded and may have | an d

Level 0 Raw MODIS data at original resolution, time order-restored.

Level 1 Level 0 observations to which radiometric calibration algorithms have been
applicd to produce radiances or irradiances at the original MODIS resolution.

Geolocation data, calibration data and other ancillary data are stored.

and resolution as the Level | data.

been temporally composited. The data are defined in a known carth based

coordinate system.

IV. NEw METHOD FOR STORAGE OF GLOBAL
REMOTELY SENSED DATA: MODIS LAND LEVEL 2 GRID

ical parameter of interest (Level 2), and finally, gridded The MODIS land data storage approach is developed to
and/or composited into some earth-based coordinate systgmserve as much information as possible about each obser-
(Level 3). MODIS land product algorithms are used to produagtion of a grid cell. The approach is purposefully general to
Level 2 and Level 3 products. accommodate the multiplicity of MODIS land products that
The smallest amount of MODIS land data that is storeste being developed and to facilitate future development of
is defined at Levels 1 and 2 as a granule and at Levelt&restrial remote-sensing algorithms. It may be adapted to
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L2G product with same
spatial dimensions as
corresponding L3 tile

Stack of
observations per
output grid cell
obs 1
\
obs 2
Fig. 3. MODIS land Level 3 tile structure (shown in the Integerized Sinu- Observationi A
soidal map projection). Pointer information: obs 3
granule pointer,
store any remotely sensed data set that can be geolocated |to line, Sf’mplea efc.
subpixel accuracy. The approach will be used to store MODIS Geophysical parameters: é:“jm
land gridded products defined at 1 km, 500 m, and 250 m. e.g., land surf. reflectance, L]
thermal anomalies, etc.
Viewing geometry:
A. Approach view zenith,
The MODIS land data storage approach is called Level 2  solar zenith, etc.

Grid (L2G). The L2G structure stores information concerning
the Level 2 observations that fall within each Level 3 grid ceﬂig
over a 24-h (GMT) period. The multiple observations stored
in the L2G structure may be examined by a Level 3 process to

. 4. Logical structure of the Level 2 Grid data storage approach.

TABLE I

extract only thg most reIevgnt observatiqns fglling over each POINTER |NFORMATION STORED IN THE L2G
grid cell. In this way, multiple observations intersecting or POINTER PRODUCT FOR EACH GRID CELL
overlapping the same grid cell are kept for input to the Level —
3 process, which may then be implemented in a more accurate ™ Description
and robust manner. granule pointer | Pointer to a unique granule ID
The logical structure of the L2G storage approach is illus- e Scan line number of the observation in the I.evel 2 granule

trated. In Flg 4. EaCh L2G prOdUCt haS the same Spatlal dl_ sample Sample number of the obscrvation in the Level 2 granule
mensions and contains the same number of rows and columns— - - , —— —
Of g|"|d cells as |tS Corresponding Level 3 t||e Three types of Aline Sub-pixcl scan line offset (1/64 nadir observation dimension precision)
data are Stored for eaCh Observation per L2G gl’ld Ce”: pointer Asample Sub-pixel sample offset (1/64 nadir obscrvation dimension precision)
information, Level 2 geophysica] parameter(s), and Sensing obscov Obscrvation coverage percentage (ratio of the observation/grid cell
geometry information. The multiple observations that fall over intersection area to the observation arca)
each grid cell are ranked, and their L2G data are stored so that addiionat Fields Stored Only at 500 m and 250 m
the observation that covers most of the g”d cell is stored first obsptr Pointer 1o corresponding obscrvation at next coarse resolution
and the observation that covers the grid cell the least is stored — — -

) i . A . . rowres, colres Row and column location residuals (for locating the corresponding
last. The ranking is for visualization convenience and has no obsorvation at mext coarss resolution)

impact on the subsequent use of the data. Each data type is
stored as a separate L2G product to ensure efficiencies in data

storage, data access, and data reprocessing. The three data tioniis | than the arid cell. but it iill be stored
types are described below. observation is larger than the grid cell, but it may still be store

1) L2G Pointer: In computer science, a pointer is deﬁne&iepe_nde_nt upon t.he rela}tive observation/grid cell intersection
as a variable that holds a memory address. Similarly, tHgIS iS discussed in Section V(b)]. MODIS land L2G products
L2G pointer stores the addresses of the L2 observatioff§ 9ridded with the grid cell dimension set equal to the nadir
that intersect each L2G grid cell. Information concerning trRPServation dimension so that the grid cell is never larger than
observation and grid cell intersection are also stored. Tablelfi observation.
summarizes the stored information. Obscovdefines the observation/grid cell intersection area

Granule pointer, lineandsampledefine the Level 2 granule divided by the area of the observation footprint. The observa-
and the location of the observation within the granuidine tion footprint is the surface area sensed by each instantaneous
and Asample describe the location of the observation centdield-of-view and is computed using simple or complex models
relative to the grid cell center as a fraction of the observatidhat can be switched in production according to processing
line and sample dimensions (Fig. Riinc andAsample may load constraints. The simple observation footprint is modeled
be used to implement subgrid cell accuracy Level 3 processas.a convex four-sided polygon with corner locations calcu-
The observation center may fall outside of the grid cell if thiated by bilinear interpolation of the neighboring geolocated



WOLFE et al. MODIS LAND DATA STORAGE, GRIDDING, AND COMPOSITING METHODOLOGY 1329

Tile Boundary

. L2G
Pointer Pointer
s Process Product
Grid Cell Geolocation
Granules
Fig. 5. Definition of the location of a grid cell center within an observation \ Sensing L2Q
(observation shown shaded). Geometry Sensing
Reorganization Geometry
Process Product
observation centers. The complex model takes into account
the MODIS PSF and across-track scan rate. Because MODIS
scans at a rapid rate in the across-track direction, the PSF is 2 3G
modeled as a square area integrated over the entire sampling /Geophysical Geophysical Geophvsical
interval, giving a triangular PSF across track and a square PSF{_ parameter . Paran{etef Pafmgetcr
along track. The grid cell area is predefined by the Level 3 Granules Reorganization Product
tile geometry. The observation and grid cell intersection area Process

is derived using efficient polygon intersection algorithms [27].
Obscovmay be used by Level 3 processes to rank the relative _ _ , ,
tributions of each observation to a aiven grid cell Fig. 6. Producuon of the Level 2 Grid Fomter, Sensing Gepmetry, and_
contr _g g : Geophysical Parameter products. Processing performed on a tile-by-tile basis
Obsptr, rowres andcolresare stored in the 250-m and thesee text for explanation).
500-m L2G pointer products to enable navigation between
the different MODIS spatial resolutions. The 250-m and th . - .
P EII observations that fall within the Level 3 tile are then

500-m data are used to map the 250-m and the 500-m obser-. : . o
. . . projected into the required Level 3 map projection.
vations to the 500-m and the 1-km observations, respectively . . . .
The pointer process first computes which observations are

2) L2G Geophysical ParameterThe Level 2 geophysical .
parameters (e.g., surface reflectance, thermal anomalies, grﬁ(ﬁed for each.LeveI 3 grid cell, .TO reQuce th_e L2G s_torage
ume, the ratio of the observation/grid cell intersection to

snow and sea ice) and ancillary quality assurance informati fyume . .
are stored for each observation that is referenced in t grid cell areg(celicov)is computed and used to discard

observations that cover less than a prespecified portion of each
3) L2G Sensing GeometryThe viewing geometry (sensorgrid cell. The L2G pointer and supplementary geometric infor-

view zenith and azimuth angles), the slant range (distance frJiWiltlon .E:[I'ablte 1 a:_ezt(:;alcu!a:ed for ;hetremalnmg observations
the sensor to the surface), and the solar geometry (solar zel‘%‘fﬂ‘ij written 1o an pointer product.

and azimuth angles) are stored for each 1-km observation tha-{he L2G pointer product is examined by a sensing geometry

is referenced in the 1-km L2G pointer product. These da?gd geophysical parameter reorganization process to produce

are required for implementation of most of the MODIS land corresponding L2G sensing geometry and L2G geophysi-

Level 3 product generation algorithms. Users requiring sens(iB?l parametgr r;]roduct. IThe selnsmg geometlry reorgaknlzauEn
geometry information at 500 or 250 m may use obsptr, rowrdd0C€ss reads the Level 1 geolocation granules to pick up the

and colres to find the corresponding 1-km observation and th&guired 1-km sensing geometry information. The geophysical
interpolate the information as required. parameter reorganization process reads the Level 2 geophysical

parameter granules to pick up the required Level 2 geophysical
parameter(s). These processes are performed for each obser-
B. L2G Production vation stored in each grid cell referenced in the L2G pointer
The L2G products are produced at the end of each day (24#educt.
period) when the Level 2 products for that day have beenThe L2G production procedure saves significant computa-
generated. L2G products that only use daytime data will onliipnal resources for generation of the MODIS Level 3 land
store observations sensed during the daylight portion of egateducts and for on-demand processing and for reprocessing
orbit. Fig. 6 illustrates the procedure used to compute the L2 these products. The procedure is performed once instead
products. The procedure is performed on a tile-by-tile basiof separately for each Level 3 process. For example, all
The process is started by establishing which Level 2 grahevel 3 processes that require gridded land surface reflectance
ules produced over the 24-h period intersect each Level 3 titkata read the same L2G land surface reflectance products
This is performed for each tile by geometric intersection of thend do not need to independently locate, combine, intersect,
predefined tile boundary with the day’s Level 1 geolocatioand geometrically correct individual Level 2 land surface
granules that define the positions of each observation. Titeflectance granules. If the geophysical parameters need to
comparison is performed in latitude and longitude coordinatdse reprocessed, unless the geolocation data have changed,

corresponding L2G pointer product.
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Fig. 7. Mean percent error inbscovand cellcoy, with respect to MODIS view zenith angle, given the MODI& geolocation error equivalent to 0.05
of a 1-km observation. Errors shown for MODIS 1-km, 500-m, and 250-m MODIS bands.

only the Level 2 geophysical parameter granules need to dfe the sensor platform, and surface relief distortions are
reprocessed, as the L2G pointer products remain unchangdilely to be correlated between neighboring observations).
Consequently, adjacent observations sensed in the same orbit
will be stored in the same or adjacent grid cells regardless of
V. MODIS L2G CONSIDERATIONS the subpixel geolocation accuracy. However, this may not be
This section discusses some specific aspects of the L&e case for observations falling over the same grid cell but
approach, with respect to sensitivity to the MODIS geolocatiofensed by different satellite overpasses. This is because the
accuracy and data storage volume. The L2G approachgisolocation errors in whiskbroom sensor data are a function
then compared with a more conventional approach of storigg the viewing geometry and of time-varying errors in the

individual orbits of nearest-neighbor resampled data. sensor position and attitude [28].
A sensitivity analysis was performed to examine the impact
A. Geolocation Accuracy of MODIS geolocation errors upasbscovandcellcov Obscov

The L2G approach can only be meaningfully implemente%eﬁ”es the ratio of the observe}tion/grid cell intersection to
if the observations are geolocated to subpixel accuracy.ff¢ observation area and is of importance to the L2G user,
the MODIS geolocation accuracy is only as good as t It may be used to-rank the rlelatlve COﬂtI’Ibut.IOI’]S of the
design specification (0.15 of a 1-km observatiom) land ob§ervat|ons that faI_I in e_ach gr_|d ceﬂ:el_lcov defines _the
not the operational goal (0.05 of a 1-km observatiar),1 ratio of the observation/grid cell intersection to the grid cell
the L2G approach may not be suitable for storage of téea and is used to determine which observations are stored
500-m bands and will not be suitable for storage of thW&r each L2G grid cell.

250-m bands. This is because the design specification geFig. 7 illustrates the mean percentage erroobscovand
olocation accuracy may result in geolocation errors that a#gllcov with respect to the MODIS viewing geometry, given
larger than the 250-m observation dimension and larger th#¢ MODIS b geolocation error of 0.05 of a 1-km observa-
half the 500-m observation dimension. Subpixel geolocatiét®n. The errors are shown for the 1-km, 500-m, and 250-m
errors will be propagated in a directly proportional mannéflODIS bands. The errors were computed using the simple
into the L2G subpixel datgAline, Asample). They may observation footprint model (convex four-sided polygon) with
also affect which observations are stored in each grid cdihe observation dimensions scaled according to the view zenith
This latter issue is not a problem for the storage of singangle [Fig. 2(a)]. The orientation of the grid cells and the
orbits of MODIS data. This is because relative geolocatigrbservation footprints at 1 km, 500 m, and 250 m were
errors between adjacent observations and between consecutivesidered to be in perfect alignment. For each view zenith
scan lines can be assumed to be negligible (high-tempoaaigle, the grid cell was translated across the observation in
frequency attitude perturbations are damped by stabilizatisteps of one hundredth of the observatioandy dimensions.
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TABLE 111 TABLE IV
MEAN, MINIMUM, AND MAXIMUM OF THE MEAN PERCENTAGE ERRORS IN MEAN NUMBER OF OBSERVATIONS STORED PER L2G GRID CELL ACROSS A
obscovanp cellcov Over THE MODIS ReLp-oF-VIEw FOR MODIS 1-km, MODIS SwaTtH UsING DIFFERENT cellcov THRESHOLDS Cellcov DEFINES THE
500-m,AND 250-m Banps, GIVEN THE MODIS 1o (0.050F A 1-km RATIO OF THE OBSERVATION/GRID CELL INTERSECTION TO THEGRID
OBSERVATION) AND 20 (0.1 oF A 1-km OBSERVATION) GEOLOCATION CELL AREA AND IS USED TO DETERMINE WHICH OBSERVATIONS ARE
ERRORS PERCENTAGE ERRORS EXPRESSED TOONE DECIMAL PLACE STORED FOREACH L2G GRID CELL. ONLY OBSERVATIONS COVERING
A GRID CELL WITH cellcov VALUES GREATER THAN A FIXED
obscov cellcov THRESHOLDARE STORED. DATA EXPRESSED TOTWO DECIMAL PLACES
1 km 500m | 250m | lkm |500m | 250 m cellcov mean number of observations stored
min 0.3 0.5 0.9 12 2.3 4.4 threshold | per grid ccll over a MODIS swath
lo
mean |09 17 33 1.6 3.2 6.0 0 4.00
error
max 1.2 2.3 4.4 2.6 5.0 9.1 S 2.98
min 0.5 0.9 1.6 23 4.4 7.9 10 2.65
2o
mean 1.7 33 5.9 3.2 6.0 10.7 15 236
error
max 23 44 7.9 5.0 9.1 15.6 20 2.11
25 1.88
30 1.67

At each of the 10000 positions, the grid cell coverage and the
observation coverages were computed and compared to eight
misaligned coverages. The misalignments were simulated
shifting the grid cell center in eight compass directions by
approprlz_ﬂez:,y, or dle_lgonal component of the 0.05 of a 1"_( reater than a fixed threshold. The threshold was set by
observation geolocation error. The mean of the absolute diff Bnsideration of the subsequent utility of the L2G data and

ences betwggn the aligned and misaligned coverage eSti.m%e[%ntial data storage savings. A 24%lIcovwas adopted for
over all positions were then calculated for each MODIS V'e\ﬁltorage of the MODIS L2G products because it is the highest
zenith angle. threshold that can be used without completely discarding

. For all M%Drl]s binds’ the grid cell Covera(;eellco;)errors observations. In the case when an observation intersects four
increase and the observation coverggescovjerrors decrease adjacent grid cells equally, the 24%elicov threshold will

with increasing view zenith angle (Fig. 7). This is becaus&nsure that the observation is not discarded from the L2G

the area of the observation footprint increases at greater vi Wia set (but instead is stored in all four grid cells). Table IV
zenith angles, but the grid cell dimension remains fixenél(jsr

drtion of each grid cell. This is implemented by only storing
servations covering a grid cell wittellcovthreshold values

ows the mean number of observations stored per grid cell
0ss a MODIS swath using differecglicovthresholds. The

a were calculated assuming a Level 3 grid lying parallel to
MODIS swath and in the same manner asdbhscovand

The errors are greater for the higher spatial resolution bal
because the geolocation error corresponds to a larger frac
of each observation. The mean, minimum, and maximum e

mgg;gan p(;rcentage eerrS(;upS_(:rO\t/)?nﬂlcfellc;\c/lnég\llgr;hg cellcov error analysis. As theellcovthreshold increases, the
swath are summarized in Table Il for NAd " mean number of observations stored per grid cell decreases.

20 geolocation errors._As_summg that the _MODIS geoloc""t'olgecause of the increasing overlap between consecutive scan
errors are normally distributed, geo_locatlon errors less thﬁﬂes further from nadir [Fig. 2(b)], an average of four obser-
the 1o error (0.05 of a 1-km o_bservqtlon) and less t_han We 2 ations are stored per grid cell across the image swath if all
error (0.1 of a 1-km observation) will occur approximately 6ié)bservations are stored (O8éllcovthreshold). Using the 24%

0, 1 1 1 _ R ) X
agd 95% of t.he7t|g[1)/e, resdpeﬁuvely. The mg;qrgum %”O M celicovthreshold gives approximately two observations stored
obscoverror 15 7.9, an the maximume 50-m celicov across the image swath (Table IV) and, therefore, reduces the
error is 15.6%. L2G users should consider tdiescoverrors | 5 storage volume by approximately 50%

accordi_ng to their a_pplicatipn r_equirements. Teticaverrors Thecellcovsensitivity to MODIS geolocation errors (Fig. 7,
are of |mportance in considering L2G data storage VOIumelsabIe [11) may result in the incorrect allocation of observations
which are discussed below. to grid cells. This implies a reduction in the utility of the L2G
data as the\line, Asample, andobscovpointer information
B. L2G Data Storage Volume will be defined, with respect to the incorrect grid cell. Fig. 8
The science requirements of the MODIS land produditustrates the mean percentage of observations incorrectly
generation algorithms will be met without storing all MODISstored per L2G grid cell using aellcov threshold of 24%
observations of the earth over a 24-h period. This is achievadd assuming MODIS 4 and 2 geolocation errors. The
by discarding all observations that cover less than a certalata were calculated in a similar manner as tfscovand
portion of each grid cell, storing only land observations, areklicoverror analysis. As before for each view zenith angle,
discarding certain MODIS land products over polar regiores grid cell was translated across the observation in steps of
(above 80 latitude N and 60 latitude S) where they are notone hundredth of the observatierandy dimensions. At each
relevant. of the 10000 positions;ellcovwas computed and then com-
The L2G data storage volume is primarily reduced bpared with thecellcovvalues of eight misaligned observations
discarding all observations that cover less than a certaimulated by shifting the grid cell center in eight compass
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Fig. 8. Mean percentage of observations incorrectly stored per grid cell in the L2G structure, given the MOD¢8llemdthreshold of 24%. The data
are shown, with respect to the MODIS view zenith angle, given the MODRIQdolocation error (equivalent to 0.05 of a 1-km observation) and given the
MODIS 20 geolocation error (equivalent to 0.1 of a 1-km observation) for MODIS 1-km, 500-m, and 250-m MODIS bands.

directions by an appropriate, y, or diagonal component of TABLE V

the observation geolocation error. The misaligned observations G-0BAL DALY (12 h) LAND SURFACE REFLECTANCE DATA STORAGE
id dtobei tl itted if thedl | OLUMES FORLEVEL 2, LEVEL 2G* (cellcov THRESHOLD = 0%), LEVEL

were consiaered (o be Incorrectly omitted | covva u_e 2G (cellcov THRESHOLD = 24%), AND LEVEL 3 PrRODUCTS DATA

was less than or equal to the 24&élicov threshold, while STORAGE VOLUMES IN Gbytes RR Dav. (THE LEVEL 3 ProDUCT

the aligned observatiogellcov value was greater than the — !SA SUMMARY OF EIGHT DAYs OF L2G DaTA, SO THAT IT HAS AN

. . . . AVERAGE DAILY VOLUME OF AN EIGHTH OF THE VOLUME SHOWN
threshold. The misaligned observations were considered to be )

incorrectly retained if theicellcovvalue was greater than the Global (land | Global (tand
24% cellcov threshold, while the aligned observatioallcov Global (all Earth surface) | b e anly) | without poles)
value was less than or equal to the threshold. The mean numier 2 o hize T e T e s
of misaligned observations incorrectly stored were computed
. H . . . 500 m Land Surface 22 164 80 37 45 26 38 23
at each view zenith angle and are illustrated in Fig. 8. The
. . . .Rﬁﬂectance (5 bands and
mean number of observations incorrectly stored increase with , _
. . . . ; . quality assurance information)
increasing view zenith angle, geolocation error, and spatia
. 0, r% m Land Surface 37 311 155 64 89 45 74 40
resolution. Less than 3, 6, and 10% of the 1-km, 500-m, a
. . . . Reflectance (2 bands and
250-m observations, respectively, are incorrectly stored given_ o
. . quality assurance information}
a MODIS Ir geolocation error. MODIS 2 geolocation errors
will occur only rarely but will cause at most 6, 10, and 16.5%">™* SO R N A
of the 1-km, 500-m, and 250-m observations to be incorrectlykm observation Pointer 2 |n 6 3
stored, respectively. An average of approximately 15% of thg, ., guservation pointer 1o s 51 2%
2§O-m ot':/lsgg;astmgls WI|I| be t|'ncorrectly stored inthe L2G datg, . . wo |17 o4 o4
given a geolocation error.
. Sensing Geome 5 4
Table V summarizes the global Level 2, L2G, and Leve] ™" @omet> voE
3 daily data storage volumes of the MODIS land surfacé®-Tota! 389|290 166 139
reflectance product. The table demonstrates the large diffeta 59 |106a |25 |10 |300 {71 |21 |63

ence between the Level 2 and L2G data storage requirements

and the efficiencies made by only storing land and nonpolar

regions. The L2G product requires 18 times more data storeayed because of the additional pointer and supplementary
than the Level 2 product if all observations of the globe ageometric information stored for each observation. Discarding
stored (0%cellcovthreshold). This is because there are mombservations using the 24églicovthreshold reduces this mul-
grid cells than there are MODIS observations (due to thiplication factor to 8.9. The L2G global storage requirements
viewing geometry, constant scan rate, and earth curvatuaeg reduced by approximately 43% by eliminating all nonland
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observations and are reduced again by approximately 14% by
not storing polar observations. 12G

Pointer
Tiles

C. Comparison of L2G Data Storage Approach with
a Conventional Data Storage Approach

DI
Conventionally individual orbits of satellite data are geomet- D%
rically corrected and gridded using nearest-neighbor resam-
pling, which does not alter the radiometry of the data. Different L2G  +
orbits sensed over a day may be stored separately or together Sensing | | | 13
as a three dimensional data structure, with two dimensions Geometry { Compositing
- . . . . . —» —» Parameter
defining the spatial extent of the data and the third dimension Tiles Process Tile
defining the different orbits. This conventional approach does
. o DI
not handle the bowtie effect, precludes opportunities for users p» ‘—:
to take advantage of the unresampled data, and makes data D~
reprocessing and on-demand data processing resource inten- |
sive. The L2G approach has several scientific advantages over L2G |
the conventional approach, with respect to the subsequent Parameter
utility of the data. These are illustrated in Section VI for Tiles

gridding and compositing applications. In particular, the L2G
approach allows the user to take advantage of the high-MODIS Dlljz
geolocation accuracy. The subgrid cell geometry of nearest- Dn
neighbor resampled observations will be unknown as neareF%'. 9. Compositing a Level 3 geophysical parameter tile frordays of
neighbor resampling may introduce geometric discontinuiti@svel 2 data using the Level 2 Grid structure.
up to a maximum ofy/2/2 of the observation dimension. .
The L2G approach stores the subgrid cell geometry for eah L2G Gridding Approach
observatior(Aline, Asample, obscoy. Both the conventional  The different MODIS land map projections are processed
and the L2G approach are sensitive to geolocation errors. Tefficiently by transforming the geolocated coordinates of the
maximum MODIS 2 geolocation error will cause no moreMODIS observations into the required map projection and
than an 8% error imbscov(Table I11) and will be propagated then extracting the required L2G geophysical parameters for
in a directly proportional manner intdline and Asample.  gridding. This is advantageous, as the observations are only
For sufficiently large geolocation errors, observations may pesampled once, avoiding unnecessary degradation of the grid-
incorrectly assigned to grid cells. This will make the L2G@ed data. Similarly, a sophisticated user may define a different
approach less useful than the conventional approach as & projection by transforming the geolocated observation
L2G sub grid cell geometric information will be redundantoordinates and then gridding the L2G geophysical parameters.
and stored unnecessarily. This will occur on average forA Level 3 gridded product may be produced using the
approximately 15% of the L2G 250-m data, given a MODI$2G structure from a single orbit of data or from multiple
20 geolocation error. observations sensed by different orbits and resulting from the
The primary disadvantage of the L2G data storage approashwtie effect. Different observations of the same grid cell can
is that of increased data storage. For production systems thatfiltered to discard unwanted observations by examination
produce many products in parallel, such as MODIS landf corresponding L2G sensing geometry and geophysical
processing efficiencies gained by adoption of a common L3§arameter tiles.
structure will outweigh data storage costs. It is recognized,The L2G structure will enable new gridding techniques to
however, that this balance will not be found for the productiome developed. Conventional resampling algorithms, such as
and storage of individual products. the cubic convolution resampling function, are based upon
sampling theorems that assume that the data are sampled
uniformly in space [8]. The information concerning the obser-
vation/grid cell intersection and their subpixel position may
VI. MODIS LAND GRIDDING AND COMPOSITING be used to implement new techniques designed to compensate
The generic MODIS land gridding and compositing apfor the changing sampling density found in MODIS data. Such
proach described in this section takes advantage of the Lit@ormation may be used to perform image restoration. For
data structure and illustrates several of its benefits. L2G tilegsample, restoration techniques may be applied to multiple
are examined to extract only the most relevant observatiosisservations of the same grid to enable the production of
falling under each output grid cell. This allows the efficienbigher spatial-resolution gridded products [29].
geometric gridding and compositing of remotely sensed data .
sets without loss of potentially important subpixel data arfa: L2G Compositing Approach
precludes some of the problems with conventional methodsConventionally, different orbits of data are geometrically
described in Section II. corrected prior to compositing. The gridding process will
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Fig. 10. L2G midlatitude example of a single granule of simulated MODIS data sensed over the Chesapeake Bay, MD. A region 26&@36km grid

cells is shown, corresponding to approximatelk2° and defined in the Integerized Sinusoidal projection, illustrating: (a) the number of observations, (b)
the observation sample number for layer one, (c) thermple for layer one, and (d) thebscovvalue of the observation stored in layer one. Multiple
observations of the same grid cell are ranked and stored in layers accordingdbsitw/value (the observation/grid cell intersection area divided by the
area of the observation footprint), with layer one containing the observation with the higbe=ivvalue at that grid cell.

change the geometric and/or radiometric structure of tlmospheric and cloud conditions, or with poor geolocation
gridded observations and may discard potentially useful obsand poor geophysical parameter quality may be removed by
vations. The L2G structure allows the compositing proceduexamination of the corresponding L2G sensing geometry and
to select or combine original ungridded observations, avoidiggophysical parameter data.
some of these problems.

Fig. 9 illustrates how MODIS compositing is performed by
reading the daily L2G tiles for each of the input parameters
required by the Level 3 compositing process. Only those VII. L2G STORAGE EXAMPLES
observations most relevant to the compositing process withinThe L2G algorithm has been implemented as part of the
each grid cell are selected for inclusion in the composite. FBIODIS production software. For illustrative purposes, the
example, observations sensed far from nadir, with differespftware was run on simulated MODIS data for a midlatitude,
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Fig. 10. Continued) L2G midlatitude example of a single granule of simulated MODIS data sensed over the Chesapeake Bay, MD. A region of 256
X 256 1-km grid cells is shown corresponding to approximately 2° and defined in the Integerized Sinusoidal projection, illustrating: (e)otrezov

value of the observation stored in layer two and (f) tiescovvalue of the observation stored in layer three. Multiple observations of the same grid cell
are ranked and stored in layers according to dbscovvalue (the observation/grid cell intersection area divided by the area of the observation footprint),
with layer one containing the observation with the highelsscovvalue at that grid cell.

single granule case and for a polar, multiple granule case.the sawtooth pattern is of the order of three grid cells per cycle
both cases, a&ellcovthreshold of 24% was used. at the north of the region and ten grid cells per cycle in the
southeast corner of the region. This pattern reflects the change
in the subpixel location of the observation centers relative
A. Midlatitude, Single Granule Example to the regular grid cell locations. A strong meipattern is

Fig. 10 shows elements of the L2G structure for sim@bserved in parts of Fig. 10 and in Fig. 11. This is produced
lated 1-km observations sensed by a single granule over thea beat pattern that arises if an image contains periodicities
Chesapeake Bay, lying close to Washington DC. A region #fat are close to half the display sampling frequency.

256 x 256 1-km grid cells corresponding to approximately The obscovlayers shown in Fig. 10(d)—(f) contain two

2 x 2° and defined in the Integerized Sinusoidal projectiopatterns, a combination of the scan overlap seen in Fig. 10(a)
is shown. The data were stored so that for each grid ceihd the sawtooth pattern seen in Fig. 10(c). Most of the
the observation with the maximumwbscovvalue was stored granule observations are stored in layers one and two, with
in layer one and the observations with progressively smalli@wer observations stored in layer three. Layer three contains
obscovvalues were stored in layers two, three, four, et@bservations that occur primarily in the scan overlap region.
Fig. 10 shows (a) the number of observations per grid celiayers four and five are not shown, as less than 1% of their
(b) the observation sample numbers &irscoviayer one, (c) grid cells contained observations. The medscovvalue is

the Asample for obscovlayer one, and (d)—(f) th@bscov 44% in layer one, 25% in layer two, and 21% in layer three.
values for layers one to three, respectively.

The number of observations per grid cell vary from one i
to five, with a mean of 1.73 over the region shown ifs: Polar Multiple Granule Example
Fig. 10(a). Up to four observations are expected per grid cellFig. 11 shows elements of the L2G structure for two over-
using acellcovthreshold of 24%. However, the observationfapping, simulated granules sensed on the same day atl.72
occur toward the edge of the granule where they overlap Anregion of 256x 256 500-m grid cells is shown, correspond-
consecutive scans, giving up to five observations per grid celig to approximately X 1°, defined in the Lambert Azimuthal
The scan overlap regions appear as dark near-horizontal ligial-Area projection. The observations were simulated as
that decrease in thickness toward nadir (sample 677) and shHming sensed at 500-m resolution. Fig. 11 shows (a) the
the scanning orientation. The observation sample nhumbersniimber of observations per grid cell, (b) the sample number,
Fig. 10(b) illustrate this, showing increasing sample numbeasd (c)obscowalues for layer one (the layer storing for each
from the west edge (sample 275) to the east edge (samgla cell the observation with the maximuabscowvalue).

680) of the region. The two sets of lines seen in Fig. 11(a) show the different

The Asample data shown in Fig. 10(c) have a sawtooth patrientations of the two overlapping granules. One granule is
tern with values varying over#&1-—1 range. The frequency of seen by the narrow dark-gray lines running nearly diagonally
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Fig. 11. L2G high-latitude example of two overlapping granules of simulated MODIS data sensed on the same dajl.af7#2gion of 256 x 256
500-m grid cells is shown, corresponding to approximately I defined in the Lambert Azimuthal Equal-Area projection illustrating: (a) the number of
observations, (b) the observation sample number for layer one, and (opsicewvalue of the observation stored in layer one. Multiple observations of the
same grid cell are ranked and stored in layers according tolikeowalue (the observation/grid cell intersection area divided by the area of the observation
footprint), with layer one containing the observation with the highestcovvalue at that grid cell.

across the region, and the other is seen by the more vertizall270 and are displayed as light points, while the sample
lines. The lines correspond to the regions of scan overlapmbers of the other granule vary from 2098 to 2306 and are
within each granule. There are a maximum of eight obsedisplayed as darker points.

vations per grid cell that occur where the overlap regions of gjg '11(c) shows thebscowalues for the first layer. These
the two granule-s intersect. The mean nl_meer of observationg 3, " aye less-pronounced striping and égiatterns and a
3.6, roughly twice the number in the single granule eXampll"?i’gher meanobscovvalue of 55% than the single granule

as expected. e e
The sample number data shown in Fig. 11(b) provide a gogéta shown in Fig. 10(d). This illustrates that, where MODIS

indication of which granule each of the observations storébits overlap more frequently, the likelihood of obtaining
in obscovlayer one came from. The sample numbers froi@ representative sample of an output Level 3 grid cell will
one granule vary near nadir (sample number 1354) from 9B&Erease.
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VIIl. PLANNED NEAR-TERM IMPROVEMENTS Y. Tung and K. Yang for their contributions to the Level 2

There are several areas where future work is needed @ifl code development.
the L2G approach: a more complete observation model, deter-
mining the optimum criteria for keeping observations, faster
algorithms, and detailed comparisons of new algorithms with REFERENCES
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