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[1] Assessing the accuracy of the aerosol-above-cloud (AAC) properties derived by
CALIOP (the Cloud-Aerosol Lidar with Orthogonal Polarization) is challenged by the
shortage of accurate global validation measurements. We have used measurements of
aerosol vertical profiles from the NASA Langley airborne High Spectral Resolution
Lidar (HSRL-1) in 86 CALIOP-coincident flights to evaluate CALIOP AAC detection,
classification, and retrieval. Our study shows that CALIOP detects ~23% of the
HSRL-detected AAC. According to our CALIOP-HSRL data set, the majority of AAC
aerosol optical depth (AOD) values are < 0.1 at 532 nm over North America. Our analyses
show that the standard CALIOP retrieval algorithm substantially underestimates the
occurrence frequency of AAC when optical depths are less than ~0.02. Those aerosols with
low AOD values can still have a consequent radiative forcing effect depending on the
underlying cloud cover and overlying aerosol absorption properties. We find essentially no
correlation between CALIOP and HSRLAACAOD (R2 = 0.27 and N = 151).We show that
the CALIOP underestimation of AAC is mostly due to tenuous aerosol layers with
backscatter less than the CALIOP detection threshold. The application of an alternate
CALIOP AAC retrieval method (depolarization ratio) to our data set yields very few
coincident cases. We stress the need for more extensive suborbital CALIOP validation
campaigns to acquire a process-level understanding of AAC implications and further
evaluate CALIOP’s AAC detection and retrieval capability, especially over the ocean and in
different parts of the world where AAC are more frequently observed and show higher
values of AOD.
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1. Introduction

[2] The presence of aerosol above clouds (AAC) can inter-
fere with the ability of passive instruments to accurately deter-
mine cloud optical properties [Haywood et al., 2004; Wilcox
et al., 2009; Coddington et al., 2010]. Coddington et al.
[2010] found that an overlying absorbing aerosol layer biases
Solar Spectral Flux Radiometer (SSFR) cloud retrievals to-
ward smaller effective radii and optical depth while
nonabsorbing aerosols had no impact. In particular, a
light-absorbing aerosol layer above bright clouds can signif-
icantly darken a scene. AAC can increase the amount of
incoming solar radiation absorbed by the atmosphere and

decrease the amount of solar radiation reflected back to space.
The diurnal average radiative flux-change approximations of
Haywood and Shine [1995], Chylek and Wong [1995], and
Russell et al. [1997, 2002] show that the aerosol-induced
change in upwelling flux at the top of atmosphere is a function
of the aerosol type, the cloud fraction, and the underlying
surface albedo, among other parameters. Recent studies
[Chand et al., 2009; Remer, 2009; Koch and Del Genio,
2010;Wilcox, 2010] define a critical underlying cloud fraction
at which AAC switches from exerting a net cooling to a net
warming effect of the Earth-atmosphere system: The greater
the cloud cover below the aerosols, the more likely the aero-
sols are to exert a positive forcing (i.e., a warming effect).
Let us note that the critical underlying cloud fraction itself de-
pends on the aerosol properties (especially absorption) and the
cloud albedo. Thus, an accurate detection and quantification of
AAC is of utmost importance for aerosol-climate studies
under all-sky conditions, both on regional and global scales
[Sakaeda et al., 2011].
[3] Several passive spaceborne sensors are, in principle, able

to separate the aerosol and cloud information in the radiation
measured at the top of the atmosphere. Yu and Zhang [2013]
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describe these AAC retrieval techniques in more detail. For
example, aerosols can be measured above clouds using
the POLarization and Directionality of Earth Reflectances
(POLDER) instrument. The presence of aerosols can signifi-
cantly affect polarized light reflected by underlying clouds in
specific scattering-angle ranges [Waquet et al., 2009;
Knobelspiesse et al., 2011; Waquet et al., 2012].
Furthermore, specific aerosols with an absorption optical depth
that decreases strongly with wavelength (e.g., in smoke and
dust plumes) can be measured above clouds using the Ozone
Monitoring Instrument (OMI) [Torres et al., 2012]. As an
extension to the visible spectral region of the near-UV retrieval
technique of Torres et al. [2012], Jethva et al. [2013]
developed a technique to detect and derive the aerosol-above-
cloud optical depth and underlying cloud optical depth
from the MODerate resolution Imaging Spectroradiometer
(MODIS) spectral reflectance measurements. Yu et al. [2012]
have examined the feasibility of combining OMI aerosol
index and MODIS cloud optical depth to derive AAC optical
depth. De Graff et al. [2012] use the SCanning Imaging
Absorption spectroMeter for Atmospheric CHartographY
(SCIAMACHY) to directly derive aerosol-above-cloud direct
radiative effects without calculating the AAC Aerosol Optical
Depth (AOD). However, all these retrievals are limited re-
search products for which there is a lack of global experimental
validation. In addition, these sensors require information about
cloud and aerosol vertical distribution to provide an accurate
measure of aerosol loading (such as AOD). This is typically
provided by the Cloud Aerosol LIdar with Orthogonal
Polarization, CALIOP, or from differential absorption mea-
surements in the oxygen A-band [Waquet et al., 2012].
CALIOP is the only active spaceborne sensor providing
aerosol backscatter and inferring extinction profiles in both
cloud-free and cloudy conditions [Winker et al., 2009]. The
advantages of lidar-derived properties near and above clouds
are high vertical and temporal resolutions paired with a narrow
source of illuminating radiation, which limits cloud adjacency
effects (3-D cloud radiative effects) and cloud contamination
of data products [Zhang et al., 2005; Wen et al., 2007;
Várnai and Marshak, 2009]. Validating products such as the
CALIOP AAC occurrence, AAC altitude, geometrical
thickness, and optical depth is challenged by the lack of suitable
validation data sets. To the best of our knowledge, the existing peer-
reviewed evaluations of CALIOP aerosol detection and optical
properties retrievals have been largely restricted to cloud-free condi-
tions [Kim et al., 2008; Pappalardo et al., 2010;Omar et al., 2009;

Kacenelenbogen et al., 2011; Rogers et al., 2011; Burton et al.,
2013; Winker et al., 2013; R. R. Rogers et al., manuscript in
preparation, 2014]. Nevertheless, CALIOP profiles of attenuated
backscatter are used to quantify frequency of occurrence, vertical
separation, and zonal and global seasonal means of AAC AOD
[Yu et al., 2013; Devasthale and Thomas, 2011].
[4] To assess the ability of CALIOP to detect AAC, we use

measurements acquired by the NASA Langley Research
Center (LaRC) airborne High Spectral Resolution Lidar
(HSRL) [Hair et al., 2008]. The data used in this study were
collected on over 800 flight hours from 10 field missions be-
tween 2006 and 2009, many of which have included
CALIOP validation flights. We use the same 86 HSRL flights
over North and Central America (Table 1) that were used in
the extensive quantitative assessment of the CALIOP 532 nm
total attenuated backscatter by Rogers et al. [2011]. The latter
article briefly describes each of the missions listed in Table 1.
[5] We first describe both the CALIOP and HSRL instru-

ments, their measurements, and different aerosol retrieval tech-
niques. We then discuss how the coincident HSRL-CALIOP
AAC data set of our study compares to global CALIOP AAC
observations; we present the results of the HSRL and
CALIOP version 3 standard AAC comparisons and list the
potential sources of error in the CALIOP retrievals. We con-
clude our study by applying an alternate CALIOP retrieval
method to the AAC cases in the HSRL-CALIOP colocated
data set of Table 1.

2. Data and Method

2.1. Description of CALIOP Standard and
HSRL Products

[6] CALIOP, flying on board the CALIPSO (Cloud-
Aerosol Lidar and Infrared Pathfinder Satellite Observations)
platform as part of the A-Train satellite constellation since
April 2006, is a three-channel elastic backscatter lidar.
CALIOP measures high-resolution (1/3 km in the horizontal
and 30m in the vertical in low and middle troposphere) pro-
files of the attenuated backscatter from aerosols and clouds
at visible (532 nm) and near-infrared (1064 nm) wavelengths
along with polarized backscatter in the visible channel [Hunt
et al., 2009]. These data are distributed as part of the level 1
CALIOP products. The level 2 products are derived from the
level 1 products using a succession of complex algorithms
[e.g., Winker et al., 2009]. The level 2 retrieval scheme is
composed of a feature detection scheme [Vaughan et al.,

Table 1. Description of the Colocated HSRL-CALIOP Data Set by Field Campaign, Date, Location, Number of Flights, and Number of
Hours on the CALIOP Tracka

Mission Date Location Number of CALIOP Flights Number of Hours on CALIOP Track

CC-VEX Jun–Aug 2006 Eastern U.S. 11 16.2
TexAQS/GOMACCS Aug–Sept 2006 Texas 10 13.8
CHAPS Jun 2007 Oklahoma City area 8 10.9
CATZ Jul–Aug 2007 Eastern U.S. 4 7.6
CARIBBEAN Jan–Feb 2008 Caribbean 7 13.2
ARCTAS (spring) Apr–2008 Alaska 12 17.5
ARCTAS (summer) Jun–Jul 2008 Canada 11 10.3
Nighttime calibration Jan–Apr 2009 Eastern U.S. 11 15.9
RACORO Jun–2009 Oklahoma 3 4
Other 2007–2009 North America 9 6.3
Total 86 flights 115.7 h

aModified from Rogers et al. [2011]. The flights grouped in the “other” section of Table 1 were conducted during transit flights to or from NASA LaRC.
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2009], a module that classifies features according to layer type
(i.e., cloud versus aerosol) [Liu et al., 2010] and subtype (e.g.,
aerosol species) [Omar et al., 2009], and, finally, an extinction
retrieval algorithm [Young and Vaughan, 2009] that estimates
aerosol backscatter and extinction coefficient profiles and the total
column Aerosol Optical Depth (AOD) based on modeled values
of the extinction-to-backscatter ratio (also called Sa) inferred for
each detected aerosol layer. Table 2 shows the lidar ratio values
and natural variabilities estimated for CALIOP’s subtypes in
the CALIOP version 3 level 2 data products (see http://
www-calipso.larc.nasa.gov/resources/calipso_users_guide/
data_summaries/layer/index.php#initial_532_lidar_ratio).
The goal of the aerosol typing algorithm is to classify the aero-
sol so as to constrain the uncertainty in lidar ratio to no more
than 30% [Winker et al., 2009]. The CALIOP AOD fractional
error is similar to the Sa fractional error for small AOD values
[Winker et al., 2009]. However, as the AOD increases, the

AOD fractional error will quickly become much larger than
the Sa fractional error. The original measurement requirements
defined for the uncertainty on the CALIOP AOD is of 40%
[Winker et al., 2009].
[7] The High Spectral Resolution Lidar (HSRL) technique

implemented in the airborne lidar flown by researchers at
NASA’s Langley Research Center (LaRC) directly retrieves
the vertical profiles of aerosol extinction coefficients and
extinction-to-backscatter ratios, without requiring ancillary
aerosol measurements or assumptions about aerosol type
[Hair et al., 2008]. The HSRL technique is employed for the
532 nm wavelength utilizing the iodine vapor filter technique
[Hair et al., 2001, 2008; Piironen and Eloranta, 1994]. The
532 nm backscatter return is split between three optical chan-
nels: (1) one measuring the backscatter (predominantly aero-
sol) polarized orthogonally to the transmitted polarization, (2)
one measuring 10% of the molecular and aerosol backscatter
polarized parallel to the transmitted polarization, and (3) one
passing through an iodine vapor cell which absorbs the central
portion of the backscatter spectrum, including all of the Mie
(aerosol) backscatter, and transmits only the Doppler/pres-
sure-broadened molecular backscatter. This third channel (the
“molecular channel”) is used to retrieve the extinction profile,
and all three channels are used to retrieve profiles of aerosol
backscatter, extinction coefficient, and aerosol depolarization
ratio. The HSRL extinction profile is retrieved from the
measured attenuated molecular backscatter by taking the deriv-
ative of the profile with respect to range and subtracting a
model-derived molecular extinction profile. Hair et al. [2008]

Table 2. Particulate Extinction-to-Backscatter Lidar Ratio Values
in the CALIOP Version 3 Level 2 Data Products and Natural
Variabilities Estimated for CALIOP’s Subtypesa

Aerosol Type Initial Lidar Ratio (532 nm)

Marine 20 sr ±30% (~6 sr)
Desert dust 40 sr ±50% (~20 sr)
Polluted continental 70 sr ±35% (~25 sr)
Clean continental 35 sr ±45% (~16 sr)
Polluted dust 55 sr ±40% (~22 sr)
Biomass burning 70 sr ±40% (~28 sr)

aOmar et al. [2005]; Cattrall et al. [2005].
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Figure 1. Illustration of CALIOP and HSRL colocation and respective lidar-derived products used in the
case of an aerosol-above-cloud (AAC) layer between the HSRL airplane and the target cloud top height CH.
The CALIOP profile products have a 5 km horizontal and 60m vertical resolution, and the nearest HSRL
profile products have a ~4/3 km horizontal and 30m vertical resolution. Any of the paired CALIOP-
HSRL profiles showing a difference in time greater than 30min and/or a difference in location at the ground
above 5 km were deleted from the data set. An “aerosol-free and cloud-free” filter is applied above the
HSRL airplane. Specific quality criteria, a relative uncertainty upper threshold, and an interval range are
applied to CALIOP extinction coefficients, and a lower threshold is applied on the HSRL extinction coef-
ficients. The aerosol extinction coefficient and its uncertainty are, respectively, noted σa and δ(σa).
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described the potential errors introduced in any of these quan-
tities and found the 532 nm extinction systematic errors to be
less than 0.01 km�1 for typical aerosol loading.
[8] The LaRC HSRL team also produces an aerosol classifi-

cation scheme [Burton et al., 2012] that classifies the mea-
surements into eight major types: ice, pure dust, dusty mix,
maritime, polluted maritime, urban, fresh smoke, and smoke.
The HSRL classification method uses four aerosol intensive var-
iables (i.e., parameters that do not vary with aerosol amount): the
aerosol depolarization ratio at 532nm, the extinction-to-back-
scatter ratio at 532nm, the backscatter color ratio, and the spec-
tral ratio of depolarization ratios at 532nm and 1064nm. In this
study, we are using the HSRL “cloud_top_height” parameter
which is calculated using a convolution of the measured signal
at 532nm with a Haar wavelet to enhance edges [Davis et al.,
2000], combined with an algorithm to set a flight-by-flight
threshold for separating the generally sharper cloud edges from
the less pronounced aerosol feature boundaries in each lidar pro-
file [Burton et al., 2012].

2.2. Colocation of HSRL and CALIOP Aerosol-Above-
Cloud

[9] Figure 1 illustrates the different products used in the
colocation of HSRL and CALIOP profiles. Each CALIOP
aerosol profile product (with a 5 km horizontal and 60m verti-
cal resolution) was colocated to the nearest HSRL profile in
time and space (subset files with a ~4/3 km horizontal and
30m vertical resolution). Any of these paired CALIOP-
HSRL profiles showing a difference in time >30min and/or
a difference in location at the ground>5 km were deleted from
the data set. We note that the relevance of a 30min and 5 km
spatiotemporal maximum separation between CALIOP and
HSRL AOD depends on the aerosol variability from one envi-
ronment to another [Redemann et al., 2006; Shinozuka and
Redemann, 2011]. R. R. Rogers et al. (manuscript in prepara-
tion, 2014) have assessed how much the AOD changed as a
function of time by matching locations on overlapping HSRL
tracks of opposite directions within 2.5 km. Their analysis
shows that the HSRL AOD values were well correlated in the
Planetary Boundary Layer (PBL) (R2> 0.9) with up to 1.5 h
separation (or roughly 555 km as the HSRL airplane usually
flies at ~370 km/h). Since our colocation requirement is longer
than 2.5 km (i.e., 5 km), it is important to note that the potential
temporal and spatial mismatch between HSRL and CALIOP
observations could have some effect on the AOD comparison
presented in this study.
[10] As a first step, we define the uppermost cloud below

the HSRL airplane (CH in Figure 1), using the HSRL
“cloud_top_height” parameter. This results in one CH value for
both CALIOP and HSRL AAC observations. Let us note that
the HSRL team has performed a similar assessment of how
much the HSRL cloud fraction changed as a function of time
along the HSRL track. The cloud fraction correlation drops off
much faster (after ~20–30min) than the one for aerosols, leading
to the conclusion that clouds are subject to more dynamical
processes, giving rise to much greater spatial variability than
aerosol. The CALIOP and HSRL AAC AOD values are then
respectively defined as the integration of the CALIOP 5km
aerosol extinction profile and HSRL 4/3km aerosol extinction
profile from the height of the HSRL airplane (most frequently
around 8km) down to CH. As described in Figure 1, any
CALIOP extinction coefficients outside the �0.1 to 1.25 km�1

range at 532nm and/or showing a relative extinction uncertainty
value above 400% and/or not satisfying specific quality control
criteria (points have to satisfy “Extinction_QC_flag_532”=0,
1, 2, 16, 18 or 129; see http://www-calipso.larc.nasa.gov/
resources/calipso_users_guide/data_summaries/layer/in-
dex.php#extinctionqc_532) were deleted from the analysis
together with all underlying extinction coefficients in the profile.
Because the CALIOP SNR is quite low, especially for daytime
retrievals, small negative values can legitimately occur in the
extinction retrieval. These values were retained to properly pre-
serve the statistical scatter of solutions around the correct
retrieval. Conversely, the HSRL profile was deleted when
presenting less than five extinction coefficients on the vertical
and an HSRL aerosol extinction coefficient was considered
when >0.01km�1 (HSRL extinction coefficients smaller than
that value are consistent with observations of clean air). The
AAC is defined as being cloud-free within and above the aero-
sol’s altitude range and can be composed of different aerosol
layers. The CALIOP AAC was assured cloud-free by selecting
CALIOP profiles with the uppermost CALIOP cloud top heights
lying at or below the corresponding HSRL cloud top height. The
CALIOP extinction retrieval process works from the top of the
atmosphere downward to the surface, correcting the signals from
lower regions for the attenuation caused by higher features as
this is retrieved [Young and Vaughan, 2009]. Any error in the
CALIOP retrieval algorithm above the airplane will most likely
propagate downward in the profile, and for this reason, we re-
move cases with high-altitude clouds (e.g., mostly cirrus clouds)
or aerosol layers above the HSRL airplane using the CALIOP
5km aerosol profile “atmospheric volume description” product.
The “cloud-free and aerosol-free” filter above theHSRL airplane
removes, respectively, 25% and 31% of the HSRL and CALIOP
AAC cases. In addition, we emphasize that the determination of
CALIOP AAC could appear more restrictive compared to the
HSRLAACbecause it requires additional quality control criteria
on the aerosol extinction coefficient. Nonetheless, applying
the filters on the extinction coefficients mentioned in the table
of Figure 1 removes significantly less (6%) CALIOP AAC
than HSRL AAC cases (27%). The 27% removed HSRL
AAC cases correspond to a very low mean HSRL AAC AOD
of ~7 � 10�4 ±4 � 10�3. The combination of both “cloud-free
and aerosol-free” and extinction coefficient filters removes,
respectively, 35% and 43% of CALIOP and HSRL AAC cases.
Finally, the HSRL aerosol classification product [Burton et al.,
2012] provides information on the type of particle above cloud
for each HSRL profile. The aerosol type we have selected for
further analysis is set to be the most frequently observed over
each specific cloud.
[11] Unless otherwise stated, the wavelength at which

AOD values are given in this paper is 532 nm.

3. Results

3.1. Representativeness of Our HSRL-CALIOP
Aerosol-Above-Cloud Data Set

[12] We have analyzed 1 year of CALIOP aerosol profile
data (2007, 5 km horizontal resolution) between 60°S and
80°N in latitude (see Figure 2) to estimate the global
frequency of AAC occurrence and the horizontal and vertical
locations and optical depths of aerosols overlying the upper-
most clouds at any altitude below 20 km. Our analyses of
12months of CALIOP data (~7.9 � 105 AAC cases; see
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Table 3) show that the AAC cases detected by CALIOP are,
on average, located between an altitude of 3.8 ± 0.3 and
3.2 ± 0.3 km and appear to be separated by 0.7 km from an
underlying cloud layer with cloud top altitude around
2.5 ± 0.3 km. According to CALIOP, the AAC cases show a
global average midvisible (532 nm) AOD of 0.03 (above an
uppermost cloud at any height below 20 km), which is appre-
ciable when compared to a global MODIS background AOD
of ~0.13–0.14 over ocean and 0.19 over land [Remer et al.,
2008] and a global average midvisible remote sensing
composite AOD near 0.13 [Kinne, 2009].
[13] Although the HSRL measurements are highly accu-

rate and best suited to evaluate CALIOP AAC, the collocated
CALIOP-HSRL AAC data set of our study (N= 171
CALIOP and N= 668 HSRL AAC cases, Table 3) is sparse
for two reasons. First, the design of the CALIOP airborne
calibration validation experiments required the HSRL to fly
in largely cloud-free conditions, and second, a majority of
CALIOP-HSRL coincident tracks are located over land and
not over the ocean where most of the AAC seems to reside.
Indeed, a global climatological distribution of daytime low-

altitude liquid water clouds derived from the International
Satellite Cloud Climatology Project (ISCCP) shows a
predominance of these clouds over oceanic areas where
upwelling of cold water takes place along the western coasts
of the continents [Devasthale and Thomas, 2011]. Aerosol-
cloud overlaps are likely to occur when both natural and
anthropogenic aerosols are transported over oceanic areas
where low-level liquid clouds are common. This is the case,
for example, offshore from the west coast of Central Africa
where the area usually shows a marine boundary layer
capped by homogeneous semipermanent stratocumulus
[Klein and Hartmann, 1993; Wood, 2012]. Indeed, October
2007 (Figure 2) shows up to 60% CALIOP AAC occurrence
offshore from Namibia, over the South East Atlantic (SEA).
According to the MODIS Rapid Response Active Fire
Detection map [Justice et al., 2002] in October 2007, these
aerosols are probably emitted by biomass burning. This is,
by far, the main source of anthropogenic aerosols in the
Southern Hemisphere.
[14] According to Table 3, the average AOD corresponding

to the collocated CALIOP-HSRL AAC data set of our
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Figure 2. AAC occurrence according to CALIOP in October 2007 (use of CALIOP level 2 5 km aerosol
daytime and nighttime profile products). The color bar is the percentage of CALIOP observations detected
as AAC compared to the number of CALIOP observations detected as either “clear air,” cloud, or aerosols
in each 1° latitude � 5° longitude box. The pale gray cells show either no CALIOP data or CALIOP data
without any AAC throughout the month of October 2007. The red boxes show the South East Atlantic
(SEA) and the Northern American (NA) regions of Table 3.

Table 3. AAC Mean Midvisible (532 nm) AOD, Max AOD, Mean Altitude of Highest Aerosol Top, Mean Altitude of Lowest Aerosol
Base, and Mean Altitude of Uppermost Cloud Top (i) Over the Globe (Between 60ºS and 80ºN in Latitude; See Figure 2 for October
2007), (ii) Over the South East Atlantic (SEA) ((30ºS,10ºN; 35ºW, 14ºE), Red Box on Figure 2), (iii) over Northern America (NA)
((12ºN,75ºN; 165ºW, 60ºW), Red Box on Figure 2), and (iv) Over the Locations (Mostly the U.S.) and During the 86 Flights of Table 1a

Aerosol
Above Cloud Lidar

Mean
AOD

Max
AOD

Mean Height Highest
Aerosol Top (km)

Mean Height Lowest
Aerosol Base (km)

Mean Height Uppermost
Cloud Top (km)

Globe 2007 CALIOP (N= 7.87E+ 05) 0.03 ± 0.03 1.53 3.78 ± 0.31 3.20 ± 0.30 2.47 ± 0.30b

South East
Atlantic 2007

CALIOP (N= 6.90E+ 04) 0.06 ± 0.04 1.11 3.49 ± 0.45 2.60 ± 0.52 1.82 ± 0.50b

North America 2007 CALIOP (N= 1.09E+ 05) 0.02 ± 0.01 0.43 4.14 ± 0.37 3.54 ± 0.34 2.61 ± 0.37b

Mostly U.S. 86 flights
of Table 1

CALIOP (N = 171) 0.05 ± 0.06 0.37 2.92 ± 1.19 2.17 ± 0.97 1.91 ± 1.02c

HSRL (N= 668) 0.04 ± 0.05 0.63 6.22 ± 0.26 2.36 ± 0.79

aThe AAC in case (i–iii) use 12months of CALIOP 5 kmday and nighttime aerosol profile products in 2007 and is defined as aerosol layer(s) above the
uppermost-detected cloud below an altitude of 20 km; the list of filters in the “CALIOP cloud-free AAC AOD” row in the table of Figure 1 is applied to case
(i–iv). The rest of the table in Figure 1 is applied to case (iv). The arithmetic averages in case (i–iii) are sums in each of the 1°� 5° bins of Figure 2, divided by
the number of CALIOP AAC cases per bin during the 12months. One averaged value and its corresponding standard deviation is then obtained by averaging
all spatial bins. The maximum AOD value is the absolute maximum value over the region of interest.

bCALIOP-detected cloud below 20 km.
cHSRL-detected cloud below airplane.
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study (i.e., 0.04–0.05) is slightly above the 2007 yearly
average CALIOP AAC AOD over the globe (i.e., 0.03) and
over North America (NA) (i.e., 0.02, red box on Figure 2).
We find that March through May are the months of highest
AAC occurrence in 2007 over NA, in agreement with
Devasthale and Thomas [2011]. The average AOD
corresponding to the collocated CALIOP-HSRL AAC data
set of our study (i.e., 0.04–0.05) is also slightly above
the March–May 2007 CALIOP AAC AOD average over NA
(i.e., 0.03).
[15] Additional airborne HSRL data over areas of high AAC

occurrence, similar to the region of SEA on Figure 2, would
provide a drastic increase in the number of coincident
CALIOP-HSRL data points and a wider range of AAC AOD
values (i.e., higher maximum and average AAC AOD).
According to Table 3, the average AOD corresponding to the
collocated CALIOP-HSRL AAC data set of our study (i.e.,
0.04–0.05) is lower than CALIOP AAC AOD over SEA for
both the 2007 yearly average (i.e., 0.06) and the peak months
of August–October 2007 (i.e., 0.08).

3.2. HSRL Versus CALIOP Aerosol-Above-Cloud

[16] Using the method described in section 2.2 and the
colocated CALIOP-HSRL profiles of Table 1, we find a total
of 2779 coincident CALIOP and HSRL profiles showing
aerosol, cloud, and/or “clear air” observations below the
HSRL airplane (Table 4). We note that those cases are
cloud-free and aerosol-free above the HSRL airplane.
Table 4 shows ~53% (N= 1488) of those 2779 profiles
exhibiting coincident CALIOP and HSRL aerosol observa-
tions anywhere between the HSRL airplane and the ground.
Furthermore, for ~36% (N= 993) of those 2779 profiles, the
HSRL detects underlying clouds.
[17] When analyzing each lidar separately on the flight

tracks of Table 1 (i.e., without considering aerosol detection
by the other lidar), we find a total of 668 HSRL AAC cases
(defined in section 2.2) compared to a total of 171 CALIOP
AAC cases. Based on those 668 HSRL and 171 CALIOP ob-
servations (Tables 3 and 4), both instruments show amajority
of AAC AOD values to be <0.1 with an average AOD of

0.04–0.05 ± 0.05–0.06 (similar to a global 2007 yearly
CALIOP mean AAC AOD of 0.03 in Table 3) and a maxi-
mum value of 0.37 for CALIOP compared to 0.63 for
HSRL. Moreover, the clouds underlying the AAC have an
average top height of ~1.91 ± 1.02 km (compared to a global
2007 yearly CALIOP mean cloud top height for AAC of
2.47 ± 0.30 km in Table 3).
[18] Table 4 shows 668 (24% of the initial 2779) profiles

exhibiting AAC cases according to HSRL, leading to the
supposition that AAC should be expected to occur 24% of
the time over our area and during our period of study. On
another hand, Table 4 shows that 171 (6% of those 2779)
profiles are recorded as AAC cases by CALIOP. According
to Table 4, 151 profiles show coincident CALIOP and
HSRL AAC cases. There are a few cases where CALIOP
shows AAC observations and HSRL does not (N=20).
Among those 20 missing HSRL AAC cases, 9 of them were
removed due to the filtering of the extinction coefficients
(see table of Figure 1) and 11 of those cases were truly
nonretrieved HSRL aerosol profiles. Although some sampling
errors could be induced by the relative scarcity of boundary
layer clouds in the CALIOP-HSRL data set and the imper-
fection of the temporal and spatial colocation between both
lidars, our first assessment is that CALIOP detects the
presence of AAC in only ~23% (N=151 compared to 668)
of the cases where the HSRL detects AAC. In other words,
CALIOP detects no AAC in ~77% of the cases in which
HSRL does. We explain this lack of CALIOP detection of
AAC in ~77% of the cases mostly by the presence of faint
aerosol layers below the CALIOP detection threshold (see
section 3.3.2). Section 3.3 describes the potential sources of
CALIOP errors in the AAC detection and retrieval with
further details.
[19] The insert of Figure 3 shows the geographical location

of the colocated HSRL and CALIOP AAC AOD observations
(N=151, in red) compared to all HSRL profiles exhibiting
AAC cases (N=668, in blue; see Table 4). With the exception
of a few cases over Alaska (N=12 during the Arctic Research
of the Composition of the Troposphere from Aircraft and
Satellites experiment), most of the AAC layers are found over
the Eastern, Central, and South Central United States. The
insert of Figure 3 also shows that CALIOP seems to better
observe AAC in the Eastern and Southern US than in the
Arctic and Canada. According to the distribution of aerosol
type (Figure 3) using the HSRL classification scheme
[Burton et al., 2012], these 151 AAC cases are mostly
composed of urban (~46%), dusty mix (~27%), and biomass
burning smoke (~13%).
[20] The distribution of the AAC type according to

CALIOP is fairly different from the one derived by the
HSRL. According to CALIOP, the AAC cases are composed
of a majority of polluted dust (~43%), smoke (~26%), and
clean continental (11%). Section 3.3 investigates the compari-
son of AAC types from CALIOP and HSRL in further detail.
Figure 4 shows the direct comparison (N=151) between AAC
AOD from CALIOP and HSRL. The dashed lines on both
sides of the 1:1 line in Figure 4 represent a CALIOP AOD un-
certainty envelope of ±40% (i.e., as given in Winker et al.
[2009]). CALIOP shows little correlation with HSRL for com-
bined day and night measurements (R2 = 0.27). The lack of
correlation remains similar, but the number of data points
drops drastically when using only the nighttime colocated lidar

Table 4. Total Number of (1) Coincident Profiles Below the HSRL
Airplane (Line 1), (2) HSRL and/or CALIOP Profiles Showing
Aerosol Observations Anywhere Between the HSRL Airplane and
the Ground (Lines 2–4), (3) HSRL Profiles Recording Underlying
Clouds (Line 5), and (4) Observed HSRL and/or CALIOP AAC
Observations (Lines 6–8; See Figure 1 for Definition of AAC)a

Below the HSRL Airplane
CALIOP and HSRL in the 5 km and/or 30min Range

Both HSRL and CALIOP profiles record aerosol,
cloud, and/or clear air

2779

HSRL profiles record aerosol 2540
CALIOP profiles record aerosol 1673
Both HSRL and CALIOP profiles record aerosol 1488
HSRL profiles record cloud 993
HSRL profiles record AAC 668
CALIOP profiles record AAC 171
Both HSRL and CALIOP profiles record AAC 151

aAll CALIOP-HSRL data are based on Table 1 with a 5 km 30min maxi-
mum range between both lidars. Results are aerosol-free and cloud-free
above the HSRL airplane, according to CALIOP.
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measurements (R2 = 0.08 and N=27). We note that an exten-
sive comparison of HSRL and CALIOP AOD in the absence
of clouds is in preparation (R. R. Rogers et al., manuscript in
preparation, 2014). This comparison finds that by day,
CALIOP frequently does not detect thin aerosol layers with
AOD< 0.1. In general, compared with the HSRL values, the
CALIOP cloud-free layer AOD was biased high by less than
50% for AOD below 0.3 with higher errors for higher AOD.
[21] About 32% of the CALIOP-HSRL AOD data set

(N=48) of Figure 4 is within the ±40% envelope. Among
the points outside the envelope (68%), 25% are above the
+40% line (i.e., CALIOP overestimates HSRL) and 43% are
below the �40% line (i.e., CALIOP underestimates HSRL).
If the two data points exhibiting a CALIOP AOD above 0.3
on Figure 4 are removed from the analysis, the red regression
line changes from an overall CALIOP overestimation of the
HSRL AOD to being within the ±40% envelope. We empha-
size that most of the AAC cases in our study show CALIOP
and HSRL AOD values below 0.1 at 532 nm, and we observe
a CALIOP underestimation of HSRL in a slight majority of
cases. Further investigations of data points in the 0–0.1
CALIOP AAC AOD range on Figure 4 show low backscatter
intensity, demonstrated by both the HSRL aerosol backscatter
coefficient (majority below 4 � 10�4 km�1 sr�1) and high
horizontal averaging required by CALIOP for detection (80
or 20 km compared to 5 km for more strongly scattering
layers). All other factors remaining equal, the aerosol back-
scatter intensity of a layer that can be detected only after hori-
zontal averaging over 80km is appreciably less than that of a
layer requiring only 20km or 5 km of horizontal averaging
[e.g., Vaughan et al., 2009, Figure 8]. This low feature back-
scatter intensity in most AAC cases points strongly to the pres-
ence of faint aerosol layers possibly below the CALIOP
detection threshold and contributing to CALIOP “missing” a
part of the AAC load. Section 3.3 lists and attempts to quantify
the contribution of several factors to the accuracy of the stan-
dard version 3 CALIOP AAC retrieval. Section 3.4 further

advances this study by applying an alternative CALIOP aero-
sol extinction retrieval method to the coincident CALIOP-
HSRL data set of Figure 4.
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Figure 3. Feature type above cloud according to the HSRL classification algorithm [Burton et al., 2012]
for day and night HSRL-CALIOP colocated AAC cases with no clouds or aerosols above the HSRL air-
plane. The insert map shows the location of the corresponding AAC AOD retrievals (red, N= 151) com-
pared to all HSRL profiles showing AAC cases (blue, N= 668; see Table 4).
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Figure 4. CALIOP versus HSRL AAC AOD at 532 nm
with day and night measurements (red regression line:
CALIOP AAC AOD=1.72 ± 0.23 HSRL AAC AOD
�0.03 ± 0.01, R2 = 0.27, N= 151, RMSE= 0.07, and bias =
3.68 � 10�18). The cloud underlying the aerosol is defined
by HSRL. The profiles are cloud-free and aerosol-free above
the HSRL airplane according to CALIOP. The color bar
shows the percentage of points in each cell compared to the
total number of coincident CALIOP-HSRL AAC cases
(N= 151). The dashed lines represent CALIOP AAC
AOD=HSRL AAC AOD±40% HSRL AAC AOD and 1:1
line. If we define the red line as yi = axi +b, then
RMSE= square root ((1/N� 2)�∑i(yi� axi� b)2) and bias =
(1/N)�∑i(yi� axi� b).
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3.3. Potential Errors in CALIOP Aerosol-Above-Cloud
Detection and Classification

[22] Other than the calibration uncertainties in the CALIOP
532 nm channel (expected to have a bias no larger than ~3%
according to Rogers et al. [2011]), we list the following poten-
tial impact factors on HSRL and CALIOP AAC detection
efficiency and AOD retrieval: (i) a potential temporal and
horizontal mismatch between CALIOP and HSRL observa-
tions (in the 30min 5 km range, discussed in section 2.2), (ii)
an aerosol typemisclassification in the CALIOP retrieval algo-
rithm, and (iii) a misdetection of the total or partial extent of
the aerosol layer above cloud due to the presence of tenuous
aerosol layers exhibiting backscatter coefficients below the
CALIOP detection threshold. We speculate that the impact
factor (i) would affect both lidar retrievals of AAC equally
and would not induce any particular bias on one lidar observa-
tion or the other. Sections 3.3.1 and 3.3.2, respectively,
attempt to quantify the impact of factors (ii) and (iii) on our
CALIOP-HSRLAAC comparison study (data set of Figure 4).
3.3.1. Aerosol Type Misclassification
[23] A CALIOP overestimation or underestimation of

HSRL AOD could be due to an incorrect CALIOP aerosol
classification of the layer [Omar et al., 2009]. First, the
CALIOP misclassification of the aerosol layer can be caused
by low CALIOP signal-to-noise ratio (SNR). CALIOP’s
SNR is lower than for typical ground-based or airborne lidars
because the instrument is far from the atmosphere, the laser
pulse energy is limited by the available electrical power, and
the footprint is moving across the Earth’s surface at nearly
7 km/s. The CALIOP SNR can also be further decreased in
the presence of a thick aerosol layer overlying clouds (i.e.,
the signal is attenuated) or due to sunlight reflected from
clouds (i.e., the noise is increased). The second reason for a po-
tential CALIOP misclassification of the aerosol comes from
the fact that CALIOP necessarily uses loading-dependent lidar
measurements and information that are only indirectly related
to aerosol type (volume depolarization, attenuated backscatter,
aerosol location, height, and surface type), rather than the
exclusively intensive aerosol properties used by the HSRL
aerosol classification [Burton et al., 2012]. Burton et al.
[2013] use HSRL-1 observations as inputs to the CALIOP

classification scheme and conclude that it is not primarily the
increased SNR that allows for more accurate aerosol classifica-
tion from the HSRL-1 measurements but instead the increased
information content in the form of aerosol intensive parame-
ters that give direct insight into aerosol type.
[24] A comparison study byMielonen et al. [2009] between

aerosol types derived from CALIOP (previous version 2.01)
and coincident AEronet RObotic NETwork (AERONET) sta-
tions (the AERONET aerosol types were categorized by single
scattering albedo and Angstrom exponent values) shows 70%
of both AERONET and CALIOP aerosol types in agreement,
with the best agreement achieved for the CALIOP “dust” and
“polluted dust” types. However, a comparison study between
the HSRL and the CALIOP aerosol classification by Burton
et al. [2013] shows relatively poor agreement for polluted dust
(i.e., 35% of CALIOP agrees with the HSRL-1 results) and
smoke (13%), compared to marine (62%), polluted continental
(54%), and desert dust (80%).
[25] Figure 5 (left) compares CALIOP and HSRL aerosol

types for all AAC cases of Figure 4. Assuming HSRL classifi-
cations are true, CALIOP seems to mostly misclassify four
aerosol types (smoke, polluted continental, dust, and clean ma-
rine) and to classify more correctly the aerosol type polluted
dust (i.e., the paired polluted dust and “dusty mix” show the
highest coincident CALIOP-HSRL data percentage both in
the x and y axes of Figure 5 (left)) for the data set analyzed in
this study. We note that the CALIOP polluted dust and the
HSRL “dusty mix” are not identical aerosol types as the former
is specifically modeled as a mixture of dust and smoke and the
latter is a mix of dust and any other aerosol. Nothing can be said
about CALIOP “clean continental” as HSRL presents no
equivalent aerosol type. Let us note that the ~77% cases of
Table 4 where CALIOP detects no AAC when HSRL does
are mostly composed of urban (~44%), dusty mix (22%), and
smoke (21%) according to the HSRL classification scheme.
[26] A CALIOP misclassification will likely result in an

incorrect inference of the appropriate CALIOP lidar ratio
(Sa). In addition to the natural variabilities of the Sa given in
Table 2, an erroneous Sa could be assumed even when the
aerosol type is correctly defined. For example, Schuster et al.
[2012] used a coincident CALIOP-AERONET data set over
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Figure 5. (left) CALIOP versus HSRL inferred aerosol types above clouds; dots show a priori matches
(or close similarity) between CALIOP and HSRL aerosol types. (right) CALIOP versus HSRL
Sa

AboveCloud (see equation (1)). The color bar on each plot shows the percentage of points in each cell com-
pared to the total number of coincident CALIOP-HSRL AAC cases.
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147 AERONET stations to demonstrate that the lidar ratio for
the CALIOP global dust model (40 sr) often underestimates
the local lidar ratio. For the purpose of comparing CALIOP
and HSRL Sa, we have integrated the Sa vertically from the
aircraft down to the cloud. In our study, the CALIOP inte-
grated Sa for each AAC is noted Sa

AboveCloud and is the ratio
of the integrated aerosol extinction coefficient profile σa(z)
by the integrated aerosol backscatter coefficient profile βa(z)
as in equation (1):

SAboveClouda ¼
∫
CH

HSRLairplane
σa zð Þdz′

∫
CH

HSRLairplane
βa zð Þdz′

(1)

whereCH is the underlying HSRL-derived cloud top height (see
Figure 1). Figure 5 (right) shows no correlation between
CALIOP and HSRL Sa

AboveCloud (R2 = 0.038, CALIOP
Sa

AboveCloud = 0.77 ±0.35 � HSRL Sa
AboveCloud + 10.39 ±20,

and N=122). Whether due to incorrect typing or inaccurate li-
dar ratio modeling, the CALIOP lidar ratio assignments are
clearly erroneous, with, for example, numerous data points

showing a CALIOP Sa
AboveCloud value of ~70 sr (corresponding

to the CALIOP biomass burning “smoke” aerosol type; see
Table 2) with a large range of corresponding HSRL
Sa

AboveCloud from ~17 to 91 sr. In the following section of this
study, we correct CALIOP AAC AOD using equation (4) for
a potentially wrong assumption of the CALIOP Sa

AboveCloud.
We introduce equations (2) and (3) to explain equation
(4). It was shown in Platt [1973] that the CALIOP aerosol
layer-integrated attenuated backscatter (γa′, sr�1) can be
written as follows:

γ′a ¼ ∫
base

top
β′a rð Þdr ¼ 1� T2ηa

a

2ηaSa
(2)

where βa′ is the aerosol attenuated backscatter coefficient
at range r (km�1 sr�1), Ta is the two-way transmittance
due to aerosols, and ηa is the aerosol multiple scattering
factor. Assuming multiple scattering effects are negligible
(i.e., ηa = 1), Ta2 is function of τa, the aerosol optical depth
as follows:

T2
a ¼ exp �2τað Þ (3)
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Figure 6. (top left) HSRL AAC AOD versus CALIOP standard AAC AOD (black) and CALIOP
corrected for erroneous Sa, AAC AODSacor (red) and (top right) HSRL AAC AOD versus CALIOP stan-
dard AAC AOD (black), CALIOP corrected for misdetection underneath the 1:1 line, AAC AODDetcor

(green) and CALIOP corrected for both erroneous Sa and misdetection, AAC AODSacor,Detcor (blue); (bot-
tom) correlation coefficient, slope, offset, standard deviation, percentage of points in the ±40% envelope
around the 1:1 line, RMS difference between CALIOP and HSRL, RMS change from the initial
CALIOP AAC AOD data points, and reduction in the RMS difference as a percentage of the mean
HSRL AAC AOD (0.047 at 532 nm).
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[27] This leads to

γ′a ¼
1� exp �2τað Þ

2Sa
and τa ¼ �0:5� ln 1� 2γ′aSa

� �
(4)

[28] We have corrected the CALIOP AAC AOD values of
Figure 4 by using equation (4) with γa′ from CALIOP and, for
Sa, the integrated HSRL Sa

AboveCloud (equation (1)). We call the
result AAC AODSacor. Figure 6 (top left) shows the comparison
between the paired (CALIOP AAC AOD; HSRL AAC AOD)
(black) and (CALIOP AAC AODSacor; HSRL AAC AOD)
(red) values. A light red vertical dashed line links each red and
black point. One result of correcting CALIOP with the accurate
HSRL Sa is an increase in the fraction of red (corrected) points
within the ±40% envelope as compared to the fraction for black
(uncorrected) points (38% for red compared to 32% for black);
however, this increase is relatively slight. Also, the red slope is
closer to 1 (1.4 compared to 1.7), and the correlation coefficients
are similar (R2 ~ 0.3). Because the improvements are minor,
we conclude from Figure 6 that an erroneous modeled
CALIOP Sa is not the dominant source of error in the CALIOP
overestimation or underestimation of the HSRL AAC AOD.
3.3.2. Misdetection of Total or Partial Vertical Extent of
the Aerosol Layer
[29] The HSRL provides a direct and unambiguous retrieval

of extinction throughout each measured profile without the
assumption of Sa. CALIPSO, on the other hand, attempts to
retrieve aerosol extinction coefficients (and hence AOD) only
in those regions where the CALIOP layer detection and classi-
fication schemes identify the presence of aerosol layers. As a
consequence, aerosols with backscatter intensities below the
CALIOP layer detection threshold will not contribute to the
CALIOP AOD estimates. When such faint aerosol layers are
present, the CALIOP-retrieved AOD is likely to underestimate
the AOD measured by HSRL. Figure 7a shows theoretical
calculations of profiles of the minimum detectable CALIOP
backscatter coefficient at 532 nm, for day or nighttime mea-
surements and with different amounts of horizontal averaging

for detection [Vaughan et al., 2005]. CALIOP’s detection sen-
sitivity increases by averaging to 20 km or 80 km resolution, in-
creases as a function of increasing altitude (because molecular
density decreases as a function of increasing altitude), and is
higher for nighttime compared to daytime measurements
(because nighttime SNR is much better than daytime SNR).
The minimum daytime or nighttime CALIOP threshold to de-
tect aerosols at an altitude of ~2–3 km is around ~2–4 � 10�4

km�1 sr�1 (with the highest horizontal averaging of 80 km).
[30] Table 4 shows 517 records of HSRL AAC without

coincident CALIOP AAC (i.e., 668–151). Those missing
CALIOP AAC cases show a very small HSRL AOD (mean of
0.04±0.06 andmedian of 0.02 at 532nm).More important from
a CALIOP detection perspective, the HSRL aerosol backscatter
coefficients for the AAC cases are also quite small, with a mean
value of 1� 10�4 ± 5� 10�4 km�1 sr�1, a median value of 5�
10�5 km�1 sr�1, and ~79% of the points lying below 2 � 10�4

km�1 sr�1 (i.e., below the predicted CALIOP 80 km
detection threshold).
[31] These findings strongly suggest that the tenuous

nature of the aerosols above clouds is most likely the reason
why CALIOP detects no AAC when HSRL does in ~77% of
cases (Table 4).
[32] Moreover, even when CALIOP detects AAC cases, the

amount of CALIOP AOD could very well be underestimated.
Because CALIOP retrieves AOD only in those regions where
aerosol layers are detected, when only some fraction of an aero-
sol layer is above the CALIOP detection threshold, the AOD
for that region will almost certainly be underestimated.
Figure 7b is an example of CALIOP underestimation of the
HSRL aerosol backscatter profile below the HSRL airplane
and above the underlying cloud (top measured by HSRL at
~2.5 km). The difference between CALIOP and HSRL AAC
AOD on Figure 7b is �80% (CALIOP AAC AOD of 0.01
compared to 0.05 for HSRL at 532 nm). CALIOP (black pro-
file) starts measuring an aerosol feature at an altitude near
3.5 km, whereas the HSRL profile starts detecting aerosols
right below the HSRL airplane (grey profile). The missing

Figure 7. (a) Detection sensitivity of CALIOP 532 nm channel on profiles horizontally averaged to 5, 20,
and 80 km (reproduced from Vaughan et al. [2005]); (b) example of two coincident CALIOP (black) and
HSRL (grey) aerosol daytime backscatter profiles on 2 August 2006 showing a difference of CALIOP-
HSRL AAC AOD of �80% (CALIOP AAC AOD of 0.01 compared to 0.05 for HSRL at 532 nm) with
a CALIOP horizontal averaging of 80 km. The green vertical arrow describes the CALIOP portion of
“missing” AOD between the HSRL airplane and the top of the cloud due to faint aerosols below the
CALIOP detection threshold (arbitrary threshold of 4 � 10�4 km�1 sr�1, blue dashed vertical line on
Figure 7a).
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CALIOP aerosol (green vertical arrow on Figure 7) shows very
low HSRL aerosol backscatter coefficients, mostly below the
empirically determined detection threshold of 4 � 10�4 km�1

sr�1 for CALIOP daytime measurements (vertical blue dashed
line on Figure 7b, part of the CALIPSO documentation).
[33] In this section of the study, we have corrected the

CALIOP standard AAC AOD data points that reside below
the 1:1 line of Figure 4 for the missing portion of the profile
(vertical green arrow on Figure 7, AAC AODDetcor in green
on Figure 6 (top right)). The added missing portion is the
vertical integration of the HSRL extinction coefficients that
have no corresponding valid CALIOP extinction coefficients
between the HSRL airplane and the cloud top height. We note
that we account for the CALIOP misdetection failure in a very
specific way; i.e., by using the HSRL extinction coefficients in
the missing regions and not by using the optical depths that
CALIOP would have computed using the CALIOP attenuated
backscatter measurements in those same regions.
[34] Figure 6 (top right) shows a significant increase of the

percentage of green data points (i.e., accounting for CALIOP
detection failure) in the ±40% envelope and a higher correla-
tion coefficient than for the red data points (respectively 54%
compared to 32% and R2 ~ 0.5 compared to R2 ~ 0.3).
Figure 6 also shows CALIOP AAC AOD corrected for both
the aerosol-type misclassification (section 3.3.1) and the aero-
sol misdetection (noted AAC AODSacor,Detcor in blue). The
correlation coefficient reaches R2 ~ 0.6 and 49% of the blue
data points remain within the ±40% envelope. The bottom
three rows of the table in Figure 6 provide further results
comparing the two corrections (for CALIOP aerosol-type
misclassification and for CALIOP misdetection of the aerosol
vertical extent). These comparisons show that overall, the
impact of the second correction (i.e., for CALIOP misdetection
of aerosol vertical extent) is both larger than the first (for
CALIOP aerosol-type misclassification) and more successful
in reducing CALIOP-HSRL differences in AAC AOD.
Specifically, the second correction produces a slightly smaller
RMS difference between CALIOP and HSRL AAC AOD
(0.046 versus 0.047) and it produces a larger RMS change from
the initial CALIOP AAC AOD (0.034 versus 0.022). The
reduction in RMS CALIOP-HSRL difference, measured as a
percentage of the mean HSRL AAC AOD of 0.047, is 14%
for the second correction, compared to 11% for the first. Let
us note that adding the “missing” HSRL extinction coeffi-
cients made the corrected CALIOP AAC AODDetcor larger
than the HSRL AOD in 72% of the cases (70 points above
the 1:1 line compared to 97 points initially below the 1:1

CALIOP-HSRL AAC AOD line). The latter seems to be the
reason for an RMS difference smaller than expected between
HSRL and CALIOP AAC AODDetcor. Applying both correc-
tions (rightmost column) induces a relative reduction in
RMS differences of 24%.
[35] We conclude that CALIOP’s lack of detection above the

cloud top height has more impact on the HSRL and CALIOP
AAC AOD difference than an erroneous CALIOP Sa assump-
tion. We attribute the remaining impact on the differences
between HSRL and CALIOP AAC AOD to spatiotemporal
collocation between both instruments (see section 2.2).

3.4. CALIOP Alternate Aerosol-Above-Cloud AOD

[36] We have observed (section 3.2) an overall poor correla-
tion between HSRL and CALIOP standard τaAboveCloud

retrievals (R2 = 0.27 and N=151). Recall that CALIOP’s stan-
dard AOD retrieval (denoted CALIOPstan) requires, in most
cases, the use of a modeled extinction-to-backscatter ratio
derived from an inference of aerosol type. Hu et al. [2007a]
and Chand et al. [2008] introduce alternative retrieval
methods that use liquid water clouds as targets of known
reflectivity under the aerosol layer to be retrieved. Because
such “constrained retrievals” do not require knowledge of a
lidar ratio, they tend to be much more accurate [Young and
Vaughan, 2009]. Our purpose in this section is to apply an
alternate CALIOP retrieval to the HSRL-CALIOP colocated
AAC AOD values of Table 1. We then investigate the agree-
ment of the CALIOP alternative AAC AOD values with both
CALIOPstan and HSRL AAC AOD retrievals.
[37] Using the technique described by Chand et al. [2008],

AOD and extinction Ångstrom exponent can be deduced di-
rectly from aerosol effects on light transmission. This tech-
nique, based on measurements of water cloud depolarization
ratio (DR) [Hu et al., 2007a] at 532nm, requires opaque
clouds and retrieves AAC optical depth regardless of the na-
ture of the overlying material. The opaque liquid water clouds
used for the DR technique are selected using the seven filters
of Table 5 applied to the CALIOP 5 km cloud layer products.
[38] Following equation (3), the CALIOP AAC AOD

using the DR method (noted AAC AODDR) can be written
as follows:

AAC AODDR ¼ � 1

2
lnT2

a (5)

[39] Maintaining the earlier assumption that aerosol multi-
ple scattering effects can be neglected, the two-way transmit-
tance for an aerosol layer overlying an opaque water cloud
can be determined using

T2 ¼ γ′water;SS
γ′water;SS;unobs:

(6)

where γ′water,SS and γ′water,SS,unobs. are the obstructed and
unobstructed (i.e., if the cloud were viewed by CALIOP
through an otherwise clear atmosphere with negligible
nonmolecular attenuation) single scattering value of the
layer-integrated attenuated backscatter for an opaque water
cloud [Hu et al., 2007a]. Moreover,

γ′water;SS ¼ γ′water � ηwater (7)

and

Table 5. Filters Needed to Select Specific Low Opaque Clouds in
Order to Perform the Alternate CALIOP DR Aerosol
Extinction Retrievala

Low Opaque Water Clouds for DR AAC Retrieval [Chand et al., 2008]

1 CALIOP CAD score ≥ 90 and ≠ 103,104, and 105
2 CALIOP opacity flag = 1
3 CALIOP layer averaging = 5 km
4 CALIOP inverse of relative uncertainty on γ′water, δ

′
water, and χ′water> 2

5 CALIOP cloud top altitude ≤ 3 km
6 CALIOP ice/water phase is water (with high QA)
7 CALIOP γ′water> 0.04 sr�1

aThe γ′water is the 532 nm liquid water cloud layer integrated attenuated
backscatter, δ′water is the layer integrated attenuated volume depolarization ra-
tio, and χ′water is the 1064/532 nm layer integrated attenuated total color ratio.
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ηwater ¼
1� δ′water
1þ δ′water

 !2

(8)

where ηwater is the layer effective multiple scattering factor
and δ’water is the layer-integrated volume depolarization ratio
of the water cloud [Hu et al., 2007b]. Rearranging equation
(5), through (8), we obtain

AAC AODDR ¼ � 1

2
ln

γ′water
γ′water;unobs:

 !
1� δ′water
1þ δ′water

 !2
1þ δ′water;unobs:
1� δ′water;unobs:

 !2
0
@

1
A

(9)

[40] Table 6 describes two ways of computing AAC
AODDR (equation (9)). The first of these, denoted AAC
AODDR,theo, is derived using theoretical values. For measure-
ments of opaque layers unaffected by multiple scattering,
γ′water,SS,unobs. = 1/2Swater, where Swater is the layer extinction-
to-backscatter ratio [Platt et al., 1999]. For water clouds with
droplet sizes smaller than 50μm,Mie calculations have shown
that Swater has a value very close to 19 sr [Pinnick et al., 1983;
O’Connor et al., 2004;Hu et al., 2006], and thus, a theoretical
calculation of the single scattering layer integrated attenuated
backscatter would be γ′water,SS,unobs. = 1/(2 � 19) =0.0263. The
second DRmethod calculation, denoted AAC AODDR,exp, uses
empirically determined values of γ′water,SS,unobs. According toHu
et al. [2007a], estimates of γ′water,SS,unobs. can be obtained from
measurements of water clouds that have similar cloud top
heights and microphysical properties but are embedded in clear
air. Estimates of γ′water,unobs. are obtained directly from the atten-
uated backscatter data. Similarly, estimates of the layer-effective
multiple scattering factor η can also be obtained directly from
the volume depolarization measurements using equation (8).
Then following equation (7), γ′water,SS,unobs. is simply the product
of ηwater and γ′water,unobs..
[41] The first step is to use the seven criteria of Table 5 to

select specific low opaque water clouds in our data set of
Table 1 in order to compute the alternative CALIOP DR
aerosol extinction retrievals. The resulting low opaque water
clouds (N= 217) above which a CALIOP DR retrieval is pos-
sible show 157 overlying AAC cases according to HSRL
with no aerosol or clouds above the HSRL airplane according
to CALIOP. Among those 157 HSRL AAC cases, only 12
clouds show overlying aerosols detected by both CALIOP
and HSRL (Table 6). Those 12 cases are located roughly
above the eastern part of the United States (longitudes be-
tween �102°W and 80°W) and are only from four different
flight segments (25 June 2006, 26 June 2007, 1 February

2008, and 5 June 2009). The extreme scarcity of the data
set (N= 12) is due to (1) the few CALIOP low opaque water
clouds in our data set and (2) the lack of CALIOP AAC
detection above those clouds. Recall that the HSRL valida-
tion flights were specifically designed to avoid cloud contam-
inated time periods and flight paths (see section 3.1). In
addition, most low opaque liquid water clouds reside over
the ocean (especially over the tropics), far from our region
of study [Devasthale and Thomas, 2011].
[42] The next step is to assess the averaged γ′water,SS,unobs.

value of a significant sample of CALIOP unobstructed low
opaque water clouds over the region of interest. The
CALIOP unobstructed clouds were defined as located between
�102°W and 80°W in longitude and presenting no aerosol or
cloud above the HSRL airplane and above the specific target
cloud (i.e., the target cloud is the only layer in the total atmo-
spheric column). We find an empirical averaged value of
0.0225 sr�1 for γ′water,SS,unobs. (using 85 nonobstructed low
opaque water clouds satisfying the criteria of Table 5). This
empirical value corresponds to a cloud lidar ratio of ~22 sr,
which might be too high for a low opaque water cloud
[Pinnick et al., 1983; Hu et al., 2006]. On the other hand,
AAC AODDR,theo was computed with an assumed theoretical
value of 0.0263 sr�1 for γ′water,SS,unobs. (corresponds to a cloud
lidar ratio of ~19 sr).
[43] Figure 8 presents the computed alternative AAC

AODDR values for the 12 coincident AAC cases of Table 6.
According to Chand et al. [2008], the minimum AAC
AODDR that can be detected with 99% confidence is around
0.12 during the day (dashed horizontal black line on
Figure 8) and 0.10 at night. The HSRL classifies most of the
12 AAC cases as smoke aerosols and the only coincident
CALIOP (standard and alternate), and HSRL AAC AOD
value above the dashed line is classified as “urban” aerosol
by HSRL on the x axis.

Table 6. Standard and Alternative AAC AODa

Name Retrieval/Calculation
Coincident

CALIOP-HSRL

AAC AOD Standard CALIOP retrieval
[Winker et al., 2009]

151

AAC AODDR,theo Equation (9) with
γ′water,SS,unobs. = 0.0263

12

AAC AODDR,exp Equation (9) with γ′water,SS,unobs.
measured and averaged over the region

12

aThe last column shows the number of coincident CALIOP and HSRL day
and night AAC observations.

Figure 8. AOD values at 532 nm retrieved by HSRL
(grey squares), CALIOPstan (black squares), CALIOPDR,theo
(γ′wate r ,SS ,unobs . = 0.0263 sr�1, black circles), and
CALIOPDR,exp (γ′water,SS,unobs. = 0.0225 sr�1, black crosses).
All AAC AOD are (i) aerosol-free and cloud-free above
the HRSL airplane according to CALIOP and (ii) overly-
ing low opaque water clouds according to CALIOP and
satisfying the criteria of Table 5. Note that we are
showing all CALIOPDR AAC AOD points even if they
lie below the daytime DR 99% confidence limit of 0.12
(horizontal dashed line).
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[44] Although we observe some discrepancies between HSRL
(grey squares), CALIOPstan (black squares), CALIOPDR,theo
(black circles), and CALIOPDR,exp (black crosses), they remain
fairly small and are contained below ~0.18 in AOD. There is a
clear lack of data to push the analysis any further.
[45] Finally, we have analyzed the cases where only HSRL

and CALIOPDR detect aerosol above low opaque water clouds
satisfying the criteria of Table 5 (i.e., the CALIOP standard
algorithm does not detect any AAC cases). For these cases
(N=145), we observe a lack of agreement between CALIOP
AAC AODDR,theo and HSRL AAC AOD (R2 = 0.38;
CALIOP AAC AODDR,theo = 1.55 ± 0.16 HSRL AAC
AOD+0.03± 0.01, N=145). However, it is important to note
that 98% of those 145 cases record an HSRL AAC AOD
below 0.12 (i.e., the 99% AOD confidence level for the DR
method during the day according to Chand et al. [2008]).
The respective HSRL and CALIOP DR average AAC AOD
for those 145 cases are 0.04 ± 0.04 and 0.09± 0.05. The
aerosol-free and cloud-free filter we impose above the HSRL
airplane helps reduce any aerosol attenuation between
CALIOP and the HSRL airplane altitude that would be
included in the CALIOP DR AOD measurements but not
in the HSRL measurements. In consequence, the larger
CALIOP mean DR AAC AOD value of 0.09 cannot entirely
be explained by the fact that the CALIOP DRmethod is based
on the aerosol attenuation of the transmission through the
entire atmospheric column (i.e., from the lidar at ~710 km
down to the underlying cloud) compared to the integration of
the extinction coefficient profile from the airplane down to
the cloud in the case of the HSRL.
[46] In the end, we are in need of more suborbital field cam-

paigns, especially over regions of the world showing high fre-
quency of occurrence of AAC (e.g., the SEA region of section
3.1) together with low opaque clouds, in order to accurately
evaluate CALIOP DR, and CALIOPstan AAC AOD.

4. Conclusion

[47] We have used 86 suborbital HSRL flights to assess the
CALIOP standard AAC detection and retrieval capability.
First of all, we have analyzed CALIOP’s ability to detect any
(i.e., even the slightest) aerosol amount above cloud. We find
that CALIOP detects AAC in ~23% of the cases in which it
is observed by HSRL. The reason for a CALIOP underestima-
tion of the AAC occurrence is that (i) as demonstrated in our
study and consistent with published expectations, for small
optical depths less than ~0.02, the standard CALIOP retrieval
algorithm substantially underestimates the occurrence fre-
quency of AAC and (ii) in our study (i.e., mostly over the con-
tinental US), a majority of the AAC AOD values lie below 0.1
with an average HSRLAACAOD of ~0.04 ±0.05. The latter is
fairly similar to the 2007 yearly mean CALIOP AAC AOD
over the globe or the March–May 2007 mean CALIOP AAC
AOD over the North American region. These findings could
have significant implications for studies that use CALIOP to
determine the global horizontal and vertical location, type,
amount, and optical and radiative properties of aerosols above
clouds. We recommend caution when using AAC estimates
obtained directly from the standard CALIPSO data products
as it could lead to a global underestimation of the AAC occur-
rence. Furthermore, aerosols recording low AOD values (such
as the AAC cases not observed by CALIOP) can still have a

consequent radiative forcing effect as the latter depend on the
underlying cloud cover (i.e., Chand et al. [2009]) show that
smoke aerosols have a net warming effect that increases
approximately linearly with cloud fraction) and the overlying
aerosol absorption properties (function of the aerosol chemical
composition, the aerosol vertical profile relative to cloud
height, and the surface albedo of the underlying cloud).
[48] Second, we have assessed CALIOP’s ability to success-

fully detect and retrieve the total amount of AAC (i.e., com-
pared to HSRL). With the exception of a few cases over
Alaska, most of the coincident CALIOP-HSRL AAC cases
(N=151) are found over the Eastern, Central, and South
Central United States. According to the HSRL classification
scheme, these AAC cases are mostly composed of urban
(~46%), dusty mix (~27%), and biomass burning smoke
(~13%). CALIOP shows essentially no agreement with
HSRL for combined day and night AAC AOD measurements
(R2 = 0.27) and ~68% of the CALIOP AAC AOD values are
outside the ±40% envelope of the CALIOP=HSRL line. The
nondetection or underestimation of AAC AOD (i.e., the total
number of aerosol layers or specific tenuous aerosol layers
above each cloud) is mostly due to tenuous aerosol layers
with backscatter coefficients below the CALIOP detection
threshold. A minority of the discrepancy seems to be due to a
CALIOP type misclassification or an error in the CALIOP
modeled Sa. Compared to an erroneous Sa assumption,
correcting for the CALIOP misdetection of aerosol vertical
extent produces a larger RMS change from the initial
CALIOP AAC AOD, a smaller RMS difference between
CALIOP and HSRL AAC AOD, and a bigger reduction in
RMS CALIOP-HSRL difference, measured as a percent of
the mean HSRL AAC AOD of 0.047 (11%). The remaining
source of error seems to be attributable to the spatial-temporal
colocation of both instruments. While the CALIOP AAC
AOD values show discrepancies with the coincident HSRL
values, no particular bias is evident. This, unfortunately, pre-
vents us from recommending any simple adjustment to obtain
more accurate estimates of AACAOD from the CALIOP data.
[49] Applying the depolarization ratio method to the coinci-

dent HSRL and CALIOP AAC data set leads to a very small
number of cases (N=12). Among those cases, only one data
point is above the AOD daytime 99% confidence limit of
0.12 for the DR method. This is mainly due to (1) very few
low opaque water clouds (needed to perform the DR retrieval)
in our data set and (2) very few cases of CALIOP AAC detec-
tion above these clouds. We recall that flight dates and paths
for HSRL underflights of CALIPSO were often chosen on
the basis of optimizing boundary layer aerosol matchups and
therefore biased to clear-sky conditions. The CALIOP DR
AOD showed minimal discrepancies with either HSRL or
CALIOP standard AOD values in the limited data set of our
study. The very small number of suitable DR data points pre-
vents us from recommending either the alternate DR or the
standard CALIOP retrieval for a better detection of the AAC.
[50] We emphasize that our study is based on a limited num-

ber of coincident HSRL-CALIOP AAC cases, and the mean
AAC AOD value of our data set can be lower by as much as
half of the one over specific regions of high CALIOP AAC
occurrence and intensity, such as offshore from the west coast
of Africa in August–October 2007. We underline the need for
additional suborbital field experiments in regions of high AAC
occurrence (and intensity) to acquire knowledge on AAC
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impacts such as process-level understanding of AAC aerosol-
radiation interaction, cloud adjustments to the AAC aerosol-
radiation interaction, or aerosol-cloud interaction. In addition,
once the appropriate HSRL data sets become available, this
will provide a higher number of coincident CALIOP-HSRL
AAC cases with a wider AAC AOD range to further
investigate the CALIOP standard and alternate detection and
retrieval of AAC. Better identifying CALIOP’s AAC obser-
vation capabilities over a wider range of aerosol conditions
(i.e., different aerosol types and loadings) will contribute to a
more accurate estimation of CALIOP-based global AAC
radiative properties.
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